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ABSTRACT

Background: Artificial intelligence (Al) powered technologies can help detect Candida
albicans (C. albicans) infections, which are a public health challenge due to increasing
incidence rates and conventional therapy resistance.

Purpose: This review explores recent advancements, methodologies, and clinical implica-
tions in the Al-driven microscopic detection of C. albicans.

Materials and Method: A literature search was conducted across multiple databases,
including PubMed, Scopus, Embase, Web of Science, and Google Scholar. Following a
thorough review of the retrieved articles, 7 studies were selected for inclusion in this re-
view.

Results: This review analyzed 7 studies that employed Al and machine learning (ML) to
detect the presence of C. albicans. The most commonly used dataset for detecting C. albi-
cans through Al was microscopic images. Two studies employed time-lapse microscopy,
and another study used the microorganism's smell fingerprint or volatile organic com-
pounds with an impressive accuracy of 97.70%. The accuracy of detecting C. albicans
through Al using microscopic images ranged from 63% to 100% depending on the model
used.

Conclusion: Al can improve the detection of C. albicans infections. It can enhance the
accuracy, speed, and efficiency of detection, providing clinicians with invaluable support
in identifying infections earlier, optimizing treatment strategies, and ultimately improving
patient outcomes.

Corresponding Author: Shoorgashti R, Dept. of Oral and Maxillofacial Medicine, School of Dentistry, Islamic
Azad University of Medical Sciences, Tehran, Iran.  Tel: +98-2122564571
Email: reyhanehshoorgashti@gmail.com

Cite this article as: Shoorgashti R, Jafari F, Lesan S. Al-Powered Microscopic Diagnostic Techniques for Candida albicans Detection: A Systematic Review. J Dent Shiraz Univ Med

Sci. March 2026; 27(4): 1-12.

Introduction

mised immune systems or underlying health conditions

Fungal infections pose a serious challenge in intensive
care units (ICUs), significantly increasing patient mor-
bidity and mortality. Among these, candidiasis, primari-
ly caused by Candida albicans (C. albicans), is the most
prevalent form of invasive fungal infection [1-4]. C.
albicans is a commensal yeast, commonly found in the
human microbiota, particularly on the mucosal surfaces
of the gastrointestinal and genitourinary tracts [5-9].
While typically harmless in healthy individuals, C.
albicans can become pathogenic in those with compro-

[6, 9-11]. The clinical manifestations of candidiasis
range from mild mucosal infections- such as oral thrush
and vaginal yeast infections- to severe, potentially life-
threatening systemic infections like candidemia [7, 10,
12-13].

Early and accurate diagnosis of candidiasis is criti-
cal, given the limited range of effective antifungal
treatments and the necessity for prompt therapeutic in-
tervention. However, conventional diagnostic methods
often suffer from delayed turnaround times, which hin-
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der timely treatment and adversely affect patient out-
comes [14].

Currently, the gold standard for diagnosing invasive
candidiasis includes histopathological analysis, positive
cultures from sterile sites, microscopic identification of
yeast in tissue specimens, and detection in blood cul-
tures [15]. Although non-culture-based methods- such
as beta-D-glucan assays, germ tube antibody detection,
nucleic acid amplification tests, and T2 Biosystems-
based diagnostics- are available, they are typically ex-
pensive, require specialized expertise, and are often
inaccessible in resource-limited settings. These methods
also involve processing times of 72-96 hours, with anti-
fungal susceptibility testing requiring an additional 48—
72 hours, further delaying treatment and increasing mor-
tality [15-17].

Given these challenges, there is an urgent need for
innovative, rapid, and practical diagnostic approaches
for detecting Candida infections.

Artificial intelligence (Al) offers promising solu-
tions in this context. By leveraging large datasets, Al
systems can detect complex patterns and features, ena-
bling advances across various domains, including
healthcare [18-24]. Originally conceptualized in the
1940s, Al refers to the ability of machines to perform
tasks that typically require human intelligence [18-19,
25]. A key subset of Al is machine learning (ML),
which allows systems to learn patterns from data
through statistical and probabilistic modeling without
being explicitly programmed [19, 24, 26]. Within ML,
deep learning (DL) uses neural networks with multiple
hidden layers to capture high-level abstractions in data,
enabling more accurate predictions and classifications
[23, 27-28].

In infectious disease management, Al has demon-
strated substantial potential in the detection, classifica-
tion, and prediction of pathogens [29-35]. By integrat-
ing data from genomic, proteomic, and clinical sources,
Al models can uncover subtle indicators of C. albicans
presence, facilitating rapid and precise diagnosis and
supporting timely clinical decision-making [1, 32, 34-
37]. Additionally, Al has transformed drug discovery by
accelerating the identification and optimization of new
therapeutic agents through sophisticated data analysis
techniques [38-43].

This systematic review aims to explore the evolving

role of Al in the detection and management of C. albi-
cans infections, highlighting recent technological ad-
vancements and their potential to reshape current diag-
nostic practices.

Materials and Method

The systematic review's reporting adheres to the Pre-
ferred Reporting Items for Systematic Reviews and Me-
ta-Analyses, extension for Diagnostic Test Accuracy
Studies (PRISMA-DTA) guideline [44]. Furthermore,
the protocol for this review was registered at PROS-
PERO under the registration number CRD42024541235.
This ensures transparency and rigor in the review pro-
cess, aligning with established standards in the field of
diagnostic test accuracy studies.

The study evaluated relevant research based on the
PICO question exploring whether Al can enhance the
diagnostic accuracy of C. albicans compared to the es-
tablished reference standard. We included studies that
met the following criteria;

Population: Studies utilized Al-powered technolo-
gies to detect and classify C. albicans;

Intervention and comparison: Al-driven detection
and classification of C. albicans compared to reference
standard tests;

Outcomes: Accuracy, sensitivity or recall, precision,
specificity, and F1-score.

In case of more than one result, the best performance
was reported.

Conference abstracts, case reports, and review litera-
ture were excluded from the study.

A thorough search of relevant literature was per-
formed in several databases including PubMed, Scopus,
Embase, Web of Science, and the Google Scholar
search engine, up to February 2024.

The search was limited to solely journal publica-
tions, with no constraints on language or publication
year. Customized keywords and search queries were
utilized for each database (Table 1). Besides the elec-
tronic search, a manual search was conducted among
the listed included studies to uncover any potentially
missed articles (Table 1).

Citation management was conducted using Endnote
X9 (Clarivate, Philadelphia, PA, USA). Initially, a sear-
ch yielded 2,245 studies. After eliminating duplicate
articles (n= 357) using the “Find Duplicates” option in
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Table 1: The strategy for Boolean search

Database Keywords

Results

("candida albicans"[MeSH Terms] OR (“candida"[All Fields] AND "albicans"[All Fields]) OR "candida
albicans"[All Fields]) AND (“artificial intelligence"[MeSH Terms] OR (“artificial"[All Fields] AND "intelli-
PubMed gence"[All Fields]) OR “artificial intelligence"[All Fields] OR (“machine learning"[MeSH Terms] OR ("ma- 76
chine"[All Fields] AND "learning"[All Fields]) OR "machine learning"[All Fields]) OR (“deep learn-
ing"[MeSH Terms] OR (“deep"[All Fields] AND "learning"[All Fields]) OR "deep learning"[All Fields]))

Google Scholar allintitle: ("candida albicans") AND (“artificial intelligence™ OR "machine learning" OR "deep learning™) 3

(‘candida albicans’/exp OR 'candida albicans’) AND (‘artificial intelligence'/exp OR ‘artificial intelligence' OR

SseEs 'machine learning'/exp OR 'machine learning' OR ‘deep learning'/exp OR 'deep learning’) LASE
s TITLE-ABS-KEY (( "candida albicans") AND (“artificial intelligence” OR "machine learning” OR “deep

Copus learning™)) 12
ScienceDirect  (“candida albicans™") AND (“artificial intelligence" OR "machine learning" OR "deep learning") 612

EndNote X9 followed by manual verification by R.S.,
2,033 articles remained for further evaluation. Upon
evaluating the titles and abstracts of these articles and
discarding studies deemed irrelevant independently by
two evaluators (R.S. and F.J.) (n= 2,011), 22 studies
were selected for a detailed full-text assessment. Any
disagreements were resolved through consensus involv-
ing a third investigator (S.L.). Ultimately, 7 studies met
the criteria for inclusion in this review.

The data extraction procedure entailed independent
extraction of data from the full text of the included arti-
cles by two reviewers (R.S. and F.J.), resulting in a sub-
stantial inter-rater agreement rate of 96%. A third re-
viewer (S.L.) also reviewed the extracted data which
encompassed the following information: the primary
author's name, publication year, study object, Candida
species analyzed, the data set used for training, valida-

tion, and testing of the model, inclusion and exclusion
criteria for each study, any pre-processing or augmenta-
tion techniques used, the type of model employed, its
task and performance.

Two reviewers (R.S. and F.J.) independently as-
sessed the risk of bias in each study using the Quality
Assessment of Diagnostic Accuracy Studies-2 (QUAD-
AS-2) tool [45]. Any disagreements were resolved
through consensus with a third investigator (S.L.).

Results

Study Selection and Characteristics

The study selection process is outlined in Figure 1 using
the PRISMA flow diagram. After screening and apply-
ing eligibility criteria, 7 studies were included in this
systematic review. These studies were published be-
tween 2021 and 2024, with a noticeable increase in pub-
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Figure 1: The flowchart of the search in this review
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lications in 2024 (Figure 2). A summary of their charac-
teristics is presented in Table 2 (Figures 1-2, Table 2).
Data Modalities

The included studies utilized 3 primary data modalities
for Al-based detection of C. albicans including (1) mi-
croscopic images (n=5) [14, 37, 46-48]; (2) time-lapse
microscopy videos (n=2) [46, 49]; and (3) volatile or-
ganic compounds (VOC) (microorganisms' smell fin-
gerprint) (n=1) [1].

Several studies included C. albicans alongside other
species for multi-class classification, while others fo-
cused solely on C. albicans detection.

Performance of Microscopic Image-Based Al Models
Five studies employed microscopic images to train and
test Al models for classifying C. albicans [14, 37, 46-

Table 2: Summary of the findings of included studies

48]. Analysis of the image dataset revealed varying ac-
curacy ranges of Al-based models, ranging from 63% to
100%. Sensitivity ranged from 56% to 88.5%, precision
from 62% to 100%, and F1 score from 59% to 88%.
These studies used convolutional neural networks

Figure 2: Cumulative total number of published studies
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procedure

Data Set
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Species Validation,
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Author/

Year Objective
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. NA NA P .
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marcescens,

Salmonella
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Jamka
2021
[48]

CNN Accuracy 97%

2,271 pairs of

images (1816/

-/ 455) (for cell Gram staining Detection
detection) and modifica- Images were
2,000 images  tions resized, cut, and
(7:3:-) (for cell cropped.
classification)

Manual cell

C. albicans, ;
segmentation

Microorganism  E. coli, P.
detection aeruginosa,
S. aureus

Zawadz
ki 2021
[37]

Microscopic CNN

0,
images DNN Accuracy 97%

Classification

Abbreviations: AMIT: Algorithm for Migration and Interaction Tracking; CNN: Convolutional Neural Network; DNN: Deep, Neural Network; C. albicans: Candida
albicans; C. dubliniensis: Candida dubliniensis; C. glabrata: Candida glabrata; C. tropicalis: Candida tropicalis; E. coli: Escherichia coli; FCOS: Fully Convolutional One-
stage Object Detector; MRSA: Methicillin-resistant Staphylococcus aureus; P. aeruginosa: Pseudomonas aeruginosa; P. mirabilis: Proteus mirabilis; P. vulgaris: Proteus
vulgaris; RNN: Recurrent Neural Network; S. agalactiae: Streptococcus agalactiae; S. aureus: Staphylococcus aureus; S. epidermidis: Staphylococcus epidermidis

(CNNs); including architectures like VGG16, ResNet5-
0, EfficientNet, and fully convolutional one-stage object
detectors (FCOS). Preprocessing steps often included
image resizing, enhancement, and data augmentation.
Performance of Video-Based Al Models

Two studies utilized time-lapse microscopy videos to
analyze neutrophil interactions with Candida species
[46, 49]. The models used included CNNSs, recurrent
neural networks (specifically GRUSs), and transformer-
based architectures. Their performance varied depend-
ing on whether the input consisted of video sequences
or static time-lapse frames and classification accuracy
ranged from 96.2% to 100%, while sensitivity varied
between 73% and 83%.

Performance of VOC-Based Al Models

One study used VOC time-series data captured from
Petri dish cultures to identify C. albicans among other
Candida species [1]. This study utilized time-series

classification models, including KNN, InceptionTime,
and HIVE-COTE ensembles. The accuracy ranged from
52.5% to 97.46%, sensitivity from 42.66% to 97.81%,
specificity from 90.16% to 99.51%, precision from
39.47% to 97.54% and F1 score from 40.24% to 97.6%.
Meta-Analysis Feasibility

The execution of a meta-analysis was unfeasible owing
to significant heterogeneity within datasets and the var-
ied Al models employed. Moreover, a deficiency in
reported essential metrics, such as true positive, true
negative, false positive and false negative rates, further
hindered the feasibility of conducting a comprehensive
meta-analysis.

Risk of Bias Assessment

Figure 3 illustrates the outcomes of the risk of bias
evaluations and applicability assessments conducted
using QUADAS-2. Most studies showed low bias in
flow and timing (86%). In the index test domain, 14%
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Figure 3: The outcome of the quality assessment of reviewed studies using the QUADAS-2 tool; a: The assessment of capability; b: The

risk of bias assessment

had high bias, 14% were unclear, and 72% showed low
bias. However, patient selection mostly had a high bias
(57%). Regarding the reference standard, 43% had a
low bias, 14% had a high bias, and 43% were unclear.

Discussion

Utilizing supplementary diagnostic methodologies can
enhance the timely identification of fungal infections,
consequently influencing treatment strategies and pa-
tient survival outcomes. Our review examined seven
studies employing Al methodologies to identify and
categorize C. albicans. Despite notable heterogeneity
across the body of evidence, the Al models showcased
considerable sensitivity, specificity, and accuracy across
different study designs and reporting methods.

Al and ML are increasingly being integrated into
medical imaging to support disease diagnosis, bi-
omarker detection, prognosis prediction, and tissue clas-
sification [14, 23, 50]. This trend extends to the identifi-

cation of fungal pathogens, where Al can process com-
plex visual datasets with enhanced efficiency and consi-
stency [51-56].

In this review, five of the included studies used mi-
croscopic images for the detection of C. albicans [14,
37, 46-48]. Two main Al approaches were identified:
direct and indirect visual detection. The direct approach
involves analyzing stained yeast images using ML mod-
els, whereas the indirect approach focuses on tracking
immune cell behavior and morphological changes over
time to infer infection presence [46].

Among the direct methods, Shankarnarayan et al.
[14], Bettauer et al. [47], Jamka et al. [48], and Zawadz-
ki et al. [37] applied CNNs to stained microscopic im-
ages of C. albicans. Shankarnarayan et al. [14] evaluat-
ed several CNN architectures and found that data aug-
mentation significantly enhanced model performance.
Their results revealed that data augmentation signifi-
cantly improved model generalization and performance.
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Specifically, the custom CNN model, when trained on
augmented data, achieved a training accuracy of 85.4%
and a validation accuracy of 83.9%. Nevertheless, this
model showed a relatively low precision and recall,
indicating room for improvement. Furthermore, the
ResNet50 model, trained with data augmentation,
demonstrated promising results, correctly predicting C.
albicans raw images with 100.0% accuracy. Neverthe-
less, its performance varied across other Candida spe-
cies, with accuracy ranging from 0.5% to 18.0%. The
InceptionV3 model, also trained with data that were
augmented, achieved 92.4% training accuracy and
78.7% validation accuracy. While this model accurately
classified the majority of C. albicans images, it strug-
gled with identifying C. auris and C. haemulonii. Nota-
bly, the InceptionV3 model outperformed other CNN
models in classifying Candida species, indicating its
potential for clinical applications.

Similarly, Jamka et al. [48] reported that Incep-
tionV3 excelled at recognizing C. albicans but faced
challenges in distinguishing morphologically similar
species such as C. glabrata and C. haemulonii. Interest-
ingly, the model's ability to predict different Candida
species varied based on the type of image dataset used.
For instance, the model achieved higher accuracy in
identifying budding cells compared to single cells, sug-
gesting that morphological features play a crucial role in
classification. Moreover, the study highlighted the im-
portance of dataset size and composition in ML model
performance, with InceptionVV3 demonstrating superior
performance compared to other models [48].

Zawadzki et al. [37] corroborated these findings,
emphasizing the efficacy of the InceptionV3 model in
accurately classifying Candida species from microscop-
ic images. They noted that while other CNN models,
such as VGG16 and EfficientNetBO0, yielded lower ac-
curacies, InceptionV3 consistently outperformed them.
The study underscored the challenges posed by morpho-
logical similarities among Candida species, necessitat-
ing further exploration of image features to improve
classification accuracy [37].

In another study conducted by Bettauer et al. [47],
Candescence, a deep learning-based tool designed for
recognizing different morphologies of C. albicans from
microscopy images was presented. Utilizing an FCOS
trained with transfer learning, Candescence identifies

and classifies nine C. albicans morphologies, including
yeast white, opaque, shmoo, and hyphae. The system
underwent iterative refinement, including a structured
learning approach and a grid search for optimal hy-
perparameters. Despite challenges like overlapping ob-
jects and subtle morphological differences, Candescence
achieved high accuracy in object detection and classifi-
cation (an F1 score of approximately 73.7% with a re-
call of 82.4% and a precision of 66.5%). That highlight-
ed the potential of this DL model in the identification of
Candida species.

The indirect approach of detecting C. albicans tech-
nique was utilized in two studies [46, 49]. Sarkar et al.
[46] and Belyaev et al. [49] tracked the movement and
shape dynamics of neutrophils over time to identify the
presence of candida species. Sarkar et al. [46] found
that by analyzing individual microscopy frames, the
CNN model was able to achieve 100% accuracy in iden-
tifying blood samples that were pathogen-free and dis-
tinguishing between C. albicans and C. glabrata.

Moreover, according to Belyaev et al. [49], they
were able to achieve test accuracies of over 75% in dis-
tinguishing between C. albicans and C. glabrata infec-
tion scenarios, and perfect accuracy in identifying path-
ogen-free samples by using an ML-supported approach
to time-lapse microscopy data.

Based on the studies conducted, both direct and indi-
rect techniques can be utilized to identify and categorize
C. albicans infections accurately. However, they each
have distinct advantages and limitations that should be
considered when choosing an appropriate method for
microbiological control. Analyzing the microscopic
images of microorganisms offers advantages like visual
confirmation of their presence and accurate identifica-
tion of microbial species based on their morphological
characteristics. It allows researchers to evaluate the via-
bility and quantity of microorganisms’ cells present in a
sample, which is essential for the microbiological con-
trol of cosmetic products. Moreover, direct imaging
methods can be customized as per specific staining
techniques, such as gram staining, to enable the simul-
taneous evaluation of multiple microbial species like
bacteria and yeasts, in a single microscopic preparation.
This comprehensive analysis makes microbiological
testing more efficient and accurate, ensuring regulatory
compliance [14, 37, 47-48].
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On the other hand, the indirect approach relies on
the host immune response to detect Candida's presence,
providing several advantages. One of its key benefits is
its potential for high-throughput screening, where auto-
mated image analysis algorithms can rapidly assess im-
mune cell behavior. This makes the indirect approach
ideal for large-scale screening of cosmetic products,
enabling the detection of Candida infections in various
samples more efficiently. Additionally, this approach
offers insights into the dynamic interactions between
microorganisms and host immune cells, providing a
deeper understanding of the mechanisms underlying
fungal infections by focusing on host responses rather
than direct pathogen detection [46, 49].

However, both approaches have certain limitations,
as well. Directly imaging and analyzing microorganisms
requires specialized equipment and expertise in micros-
copy and image analysis. These methods can be expen-
sive and may not be readily available in all settings.
Furthermore, the sample preparation and staining pro-
cedures required for direct imaging are time-consuming
and labor-intensive, which makes it challenging to scale
for large-scale screening. On the other hand, analyzing
host immune responses also has its limitations. One
notable challenge arises from the intricate interpretation
of immune cell behavior, which exhibits considerable
variation across individuals and can be affected by fac-
tors such as age, the overall condition of health, and
genetic background. Due to this variability, it can be
difficult to draw definitive conclusions about Candida
infections based solely on immune cell phenotypes. In
addition, analyzing time-lapse microscopy used in ana-
lyzing immune cell behavior can be challenging due to
the time-intensive nature of the pre-processing steps
required for video classification [14, 37, 46-49].

Detecting microorganisms can be done through
VOCs. VOCs refer to a diverse array of molecules typi-
cally hydrophobic and based on carbon atoms, originat-
ing from the metabolic activities of fungi and bacteria,
encompassing both their primary and secondary meta-
bolic processes. These compounds are volatile, allowing
them to easily disperse through the air and travel long
distances [57]. The methods to detect VOCs include gas
chromatography-mass spectrometry, solid phase micro-
extraction, simultaneous distillation extraction, and se-
lected ion flow tube mass spectrometry [58-62]. Anoth-

er method is the electronic nose (E-Nose), which uses
Al to detect patterns of VOCs and categorize them.
Similar to a biological nose, an E-Nose endeavors to
recognize patterns within VOCs detected by its sensors.
These sensor readings are then scrutinized and catego-
rized by an Al model [1, 58]. E-Nose is applied in vari-
ous domains, including food safety [63-65], agriculture
[57, 66-70], and medical diagnosis [59, 61-62]. Limita-
tions such as sensor stability, standardization, and relia-
bility require refinement, and progress is being made
through the integration of Al and ML [1].

In this review, one study utilized E-Nose and ML to
detect C. albicans [1]. The results of the study conduct-
ed by Bastos et al. [1] demonstrated the effectiveness of
the proposed approach in accurately identifying Candida
species. The Al models, particularly Inception Time,
achieved high accuracy rates, with most models surpas-
sing 90% accuracy in the validation and testing phases.
Notably, Inception Time exhibited an average accuracy
of 97.70%, underscoring its potential as a reliable model
used for classifying volatile compounds produced by
Candida species.

The integration of E-Nose technology with Al algo-
rithms offers several advantages in Candida detection.
Firstly, the use of E-Nose enables rapid and non-
invasive sample analysis, facilitating timely diagnosis.
The portability and relatively low cost of E-Nose devic-
es further enhance their utility in various healthcare
settings. Moreover, the study highlights the importance
of Time Series analysis in capturing temporal patterns
of VOC emissions, which are critical for accurate spe-
cies identification [1].

In general, Al-based detection of C. albicans is a ra-
pidly evolving field with multiple viable approaches.
Microscopic imaging enables high-resolution, species-
specific identification, while VOC detection offers rapid
and scalable diagnostics. Each method has strengths and
limitations, and the choice of technique should be in-
formed by context-specific requirements such as availa-
ble infrastructure, desired throughput, and diagnostic
precision.

Future work should focus on improving model gen-
eralizability, particularly in morphologically similar
species, and exploring hybrid approaches that combine
imaging, VOC analysis, and immune profiling. Addi-
tionally, standardizing data collection and evaluation
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protocols will be essential to facilitate clinical transla-
tion and regulatory approval.

It is important to contextualize these findings within
the quality of the included studies. The risk of bias as-
sessment revealed that 57% of studies had a high risk of
bias in patient selection, primarily due to the use of la-
boratory-controlled datasets and limited information
regarding inclusion criteria. This presents a significant
limitation; as such datasets may not fully reflect the
diversity and complexity of real-world clinical scenari-
0s. Consequently, the performance metrics reported-
though promising- may be subject to overestimation and
lack of generalizability. So, more representative sam-
pling methods, multi-center datasets, and clearer docu-
mentation of participant selection processes are recom-
mended in future studies to improve the robustness and
applicability of Al models in real-world settings.

Conclusion

This systematic review found that Al-based methods
demonstrate strong potential in detecting C. albicans
infections across various modalities, including micro-
scopic imaging and VOC analysis. Both direct and indi-
rect Al approaches showed high accuracy, sensitivity,
and specificity in the included studies. While each tech-
nique has its strengths and limitations, the overall find-
ings support the feasibility of Al-assisted diagnostic
tools in identifying C. albicans, with further validation
needed for clinical implementation.

Acknowledgments

None.

Funding sources

No funding was received for this research.

Conflict of Interest

The authors declare that they have no known competing
financial interests or personal relationships that could
have appeared to influence the work reported in this

paper.

References

[1] Bastos ML, Benevides CA, Zanchettin C, Menezes FD,
In4cio CP, de Lima Neto RG, et al. Breaking barriers in
Candida spp. Detection with electronic noses and artific-
al intelligence. Sci Rep. 2024; 14: 956.

[2] Bajwa S, Kulshrestha A. Fungal infections in intensive
care unit: challenges in diagnosis and management. Ann
Med Health Sci Res. 2013; 3: 238-344.

[3] Garbee DD, Pierce SS, Manning J. Opportunistic Fungal
Infections in Critical Care Units. Crit Care Nurs Clin
North Am. 2017; 29: 67-79.

[4] LiF, Zhou M, Zou Z, Li W, Huang C, He Z. A Risk
prediction model for invasive fungal disease in critically
Il patients in the intensive care unit. Asian Nurs Res
(Korean Soc Nurs Sci). 2018; 12: 299-303.

[5] Ghasemian Gorji R, Shoorgashti R, Lotfali E, Farhadi S.
MIC Determination of Silver Nanoparticles on Nystatin-
Resistant Candida albicans in Patients with Denture
Stomatitis: An In Vitro Study. Middle East J Rehabil
Health Stud. 2024; 11: €138030.

[6] Shoorgashti R, Khalilirad M, Haji Molla Hoseini M,
Lesan S. Evaluation of the relationship between nitric
oxide and candida albicans-associated denture stomatitis:
A cross-sectional study. Caspian J Dent Res. 2023; 12:
82-88.

[7]1 Najafi M, Lotfali E, Shoorgashti R, Ebrahimi H, Lesan S.
Evaluation of the Effects of Dielectric Barrier Discharge
Plasma on Candida albicans Strains: An in vitro Study.
Jundishapur J Microbiol. 2023; 16: e142236.

[8] Shoorgashti R, Havakhah S, Nowroozi S, Ghadamgahi B,
Mehrara R, Oroojalian F. Evaluation of the antibacterial
and cytotoxic activities of Ag/ZnO nanoparticles loaded
polycaprolactone/chitosan composites for dental applicat-
ions. Nanomed J. 2023; 10: 68-76.

[9] Ghafari K, Shoorgashti R, Lesan S, Rezaei M, Farrokhnia
T. Comparative Efficacy of Chlorhexidine and Fluorine
Total Mouthwashes Against Candida albicans and
Streptococcus sanguinis. Arch Clin Infect Dis. 2024; 19:
e154742.

[10] Mirhosseini N, Shoorgashti R, Lesan S. The evaluation
of clinical factors affecting oral health impacts on the
quality of life of Iranian elderly patients visiting dental
clinics: A cross-sectional study. Spec Care Dentist. 2024;
44:1219-1227.

[11] Shoorgashti R, Moshiri A, Lesan S. Evaluation of Oral
Mucosal Lesions in Iranian Smokers and Non-smokers.
Niger J Clin Pract. 2024; 27: 467-474.

[12] Mohammadi S, Shoorgashti R, Lotfali E, Lesan S, Ebrah-
imi H. The evaluation of 660, 810, and 940nm laser
wavelengths on nystatin-resistant candida albicans: An in
vitro study. Jundishapur J Microbiol. 2024; 17: e144680.



Artificial intelligence for Candida albicans detection
10.30476/dentjods.2025.104629.2540

Shoorgashti R, et al

[13] Shoorgashti R, Nikmaram R, Azimi Y, Rouientan A,
Ebrahimi H, Lesan S. Effectiveness of cold plasma
application in oral wound healing process: A scoping
review. Oral Dis. 2024; 30: 5062-5081.

[14] Shankarnarayan SAP, Charlebois DAP. Machine learning
to identify clinically relevant Candida yeast species. Med
Mycol. 2024; 62: 134.

[15] Donnelly JP, Chen SC, Kauffman CA, Steinbach WJ,
Baddley JW, Verweij PE, et al. Revision and update of
the consensus definitions of invasive fungal disease from
the european organization for research and treatment of
cancer and the mycoses study group education and resea-
rch consortium. Clin Infect Dis. 2020; 71: 1367-1376.

[16] Dupuis C, Le Bihan C, Maubon D, Calvet L, Ruckly S,
Schwebel C, et al. Performance of Repeated Measures of
(1-3)-p-D-Glucan, Mannan Antigen, and Antimannan
Antibodies for the Diagnosis of Invasive Candidiasis in
ICU Patients: A Preplanned Ancillary Analysis of the
EMPIRICUS Randomized Clinical Trial. Open Forum
Infect Dis. 2021; 8: ofab080.

[17] Ledn C, Ruiz-Santana S, Saavedra P, Castro C, Loza A,
Zakariya I, et al. Contribution of Candida biomarkers and
DNA detection for the diagnosis of invasive candidiasis
in ICU patients with severe abdominal conditions. Crit
Care. 2016; 20: 149.

[18] Schwendicke F, Samek W, Krois J. Artificial Intelligence
in Dentistry: Chances and Challenges. J Dent Res. 2020;
99: 769-774.

[19] Rokhshad R, Mohammad-Rahimi H, Price JB,
Shoorgashti R, Abbasiparashkouh Z, Esmaeili M, et al.
Atrtificial intelligence for classification and detection of
oral mucosa lesions on photographs: a systematic review
and meta-analysis. Clin Oral Investig. 2024; 28: 88.

[20] Takiddin A, Schneider J, Yang Y, Abd-Alrazaq A, Hous-
eh M. Artificial intelligence for skin cancer detection:
Scoping review. J Med Internet Res. 2021; 23: e22934.

[21] Hennrich J, Ritz E, Hofmann P, Urbach N. Capturing
artificial intelligence applications' value proposition in h-
ealthcare- a qualitative research study. BMC Health Serv
Res. 2024; 24: 420.

[22] Basri KN, Yazid F, Mohd Zain MN, Md Yusof Z, Abdul
Rani R, Zoolfakar AS. Artificial neural network and
convolutional neural network for prediction of dental
caries. Spectrochim Acta A Mol Biomol Spectrosc. 2024;
312: 124063.

[23] Shoorgashti R, Alimohammadi M, Baghizadeh S, Radm-

ard B, Ebrahimi H, Lesan S. Artificial intelligence
models accuracy for odontogenic keratocyst detection
from panoramic view radiographs: A systematic review
and Meta-Analysis. Health Sci Rep. 2025; 8: €70614.

[24] Rokhshad R, Nasiri F, Saberi N, Shoorgashti R, Ehsani
SS, Nasiri Z, et al. Deep learning for age estimation from
panoramic radiographs: A systematic review and meta-
analysis. J Dent. 2025; 154: 105560.

[25] Van Stuijvenberg OC, Broekman MLD, Wolff SEC,
Bredenoord AL, Jongsma KR. Developer perspectives on
the ethics of Al-driven neural implants: a qualitative
study. Sci Rep. 2024; 14: 7880.

[26] Li G, Li S, Xie J, Zhang Z, Zou J, Yang C, et al. Identify-
ing changes in dynamic plantar pressure associated with
radiological knee osteoarthritis based on machine learnin-
g and wearable devices. J Neuroeng Rehabil. 2024;21:45.

[27] Al-Rawi N, Sultan A, Rajai B, Shuaeeb H, Alnajjar M,
Alketbi M, et al. The Effectiveness of Atrtificial
Intelligence in Detection of Oral Cancer. Int Dent J.
2022; 72: 436-4347.

[28] Dashti M, Londono J, Ghasemi S, Khurshid 2Z,
Khosraviani F, Moghaddasi N, et al. Attitudes,
knowledge, and perceptions of dentists and dental
students toward artificial intelligence: a systematic
review. J Taibah Univ Med Sci. 2024;19: 327-337.

[29] Wong F, de la Fuente-Nunez C, Collins JJ. Leveraging
artificial intelligence in the fight against infectious
diseases. Science. 2023; 381: 164-170.

[30] Brownstein JS, Rader B, Astley CM, Tian H. Advances
in artificial intelligence for infectious-disease surveillan-
ce. N Engl J Med. 2023; 388: 1597-1607.

[31] Chu WT, Reza SMS, Anibal JT, Landa A, Crozier I,
Bagci U, et al. Artificial Intelligence and Infectious
Disease Imaging. J Infect Dis. 2023; 228: S322-S336.

[32] Lorenzo-Villegas DL, Gohil NV, Lamo P, Gurajala S,
Bagiu IC, Vulcanescu DD, et al. Innovative Biosensing
Approaches for Swift Identification of Candida Species,
Intrusive Pathogenic Organisms. Life (Basel). 2023; 13:
2099.

[33] Rajput A, Bhamare KT, Thakur A, Kumar M. Biofilm-i:
A platform for predicting biofilm inhibitors using auantit-
ative structure-relationship (QSAR) based regression
models to curb antibiotic resistance. Molecules. 2022; 27:
4861.

[34] Mairi A, Hamza L, Touati A. Artificial intelligence and
its application in clinical microbiology. Expert Rev Anti

10



Shoorgashti R, et al
10.30476/dentjods.2025.104629.2540

J Dent Shiraz Univ Med Sci. March 2026; 27(4): 1-12.

Infect Ther. 2025 Mar 26: 1-22.

[35] Liu GY, Yu D, Fan MM, Zhang X, Jin ZY, Tang C, et al.
Antimicrobial  resistance  crisis:  could artificial
intelligence be the solution? Mil Med Res. 2024; 11: 7.

[36] Delavy M, Cerutti L, Croxatto A, Prod'hom G, Sanglard
D, Greub G, et al. Machine learning approach for candida
albicans fluconazole resistance detection using matrix-
assisted laser desorption/ionization time-of-flight mass
spectrometry. Front Microbiol. 2019; 10: 3000.

[37] Zawadzki P, Adamczuk P, Jamka K, Wrdblewska-
Luczka P, Bojar H, Raszewski G. The Microorganism
detection system (SDM) for microbiological control of
cosmetic products. Ann Agric Environ Med. 2021; 28:
705-708.

[38] He S, Leanse LG, Feng Y. Artificial intelligence and
machine learning assisted drug delivery for effective
treatment of infectious diseases. Adv Drug Deliv Rev.
2021; 178: 113922.

[39] McFadden BR, Reynolds M, Inglis TJJ. Developing
machine learning systems worthy of trust for infection
science: a requirement for future implementation into
clinical practice. Front Digit Health. 2023; 5: 1260602.

[40] Bess A, Berglind F, Mukhopadhyay S, Brylinski M, Gri-
ggs N, Cho T, et al. Artificial intelligence for the discove-
ry of novel antimicrobial agents for emerging infectious
diseases. Drug Discov Today. 2022; 27: 1099-1107.

[41] Joshi T, Pundir H, Chandra S. Deep-learning based
repurposing of FDA-approved drugs against candida
albicans dihydrofolate reductase and molecular dynamics
study. J Biomol Struct Dyn. 2022; 40: 8420-8436.

[42] Gao A, Kouznetsova VL, Tsigelny IF. Machine-learning-
based virtual screening to repurpose drugs for treatment
of Candida albicans infection. Mycoses. 2022; 65: 794-
805.

[43] Elkomy MH, EImowafy M, Shalaby K, Azmy AF, Ahm-
ad N, Zafar A, et al. Development and machine-learning
optimization of mucoadhesive nanostructured lipid carri-
ers loaded with fluconazole for treatment of oral candidi-
asis. Drug Dev Ind Pharm. 2021; 47: 246-258.

[44] Mclnnes MDF, Moher D, Thombs BD, McGrath TA,
Bossuyt PM, Clifford T, et al. Preferred reporting items
for a systematic review and meta-analysis of diagnostic
Test accuracy studies: The PRISMA-DTA statement.
Jama. 2018; 319: 388-396.

[45] Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks
JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the

11

quality assessment of diagnostic accuracy studies. Ann
Intern Med. 2011; 155: 529-536.

[46] Sarkar A, Praetorius JP, Figge MT. Deep learning-based
characterization of neutrophil activation phenotypes in ex
vivo human Candida blood infections. Comput Struct
Biotechnol J. 2024; 23: 1260-1273.

[47] Bettauer V, Costa A, Omran RP, Massahi S, Kirbizakis
E, Simpson S, et al. A Deep Learning Approach to
Capture the Essence of Candida albicans Morphologies.
Microbiol Spectr. 2022; 10: e0147222.

[48] Jamka K, Wréblewska-Luczka P, Adamczuk P, Zawadz-
ki P, Bojar H, Raszewski G. Methodology for preparing a
cosmetic sample for the development of Microorganism
Detection System (SDM) software and artificial
intelligence learning to recognize specific microbial
species. Ann Agric Environ Med. 2021; 28: 681-685.

[49] Belyaev |, Marolda A, Praetorius JP, Sarkar A,
Medyukhina A, Hunniger K, et al. Automated
characterisation of neutrophil activation phenotypes in ex
vivo human Candida blood infections. Comput Struct
Biotechnol J. 2022; 20: 2297-2308.

[50] Yousif M, van Diest PJ, Laurinavicius A, Rimm D, van
der Laak J, Madabhushi A, et al. Artificial intelligence
applied to breast pathology. Virchows Arch. 2022; 480:
191-209.

[51] Bilal H, Khan MN, Khan S, Shafig M, Fang W, Khan
RU, et al. The role of artificial intelligence and machine
learning in predicting and combating antimicrobial
resistance. Comput Struct Biotechnol J. 2025; 27: 423-
439,

[52] Al-Huseini LMA, Kadhim NJ, Mahdi MS, Ogaili RH,
Al-Hammood O. Microbial infection disease diagnosis
and treatment by artificial intelligence. Wiad Lek. 2025;
78: 442-447.

[53] Cesaro A, Hoffman SC, Das P, de la Fuente-Nunez C.
Challenges and applications of artificial intelligence in
infectious diseases and antimicrobial resistance. NPJ
Antimicrob Resist. 2025; 3: 2.

[54] Wang Z, Zhu G, Li S. Mapping knowledge landscapes
and emerging trends in artificial intelligence for
antimicrobial resistance: bibliometric and visualization
analysis. Front Med (Lausanne). 2025; 12: 1492709.

[55] Abu-El-Ruz R, AbuHaweeleh MN, Hamdan A, Rajha
HE, Sarah JM, Barakat K, Zughaier SM. Artificial
Intelligence in Bacterial Infections Control: A Scoping
Review. Antibiotics (Basel). 2025; 14: 256.



Artificial intelligence for Candida albicans detection
10.30476/dentjods.2025.104629.2540

Shoorgashti R, et al

[56] Chen YM, Hsiao TH, Lin CH, Fann YC. Unlocking
precision medicine: clinical applications of integrating
health records, genetics, and immunology through
artificial intelligence. J Biomed Sci. 2025; 32: 16.

[57] Razo-Belmén R, Angeles-L6pez Y|, Garcia-Ortega LF,
Leon-Ramirez CG, Ortiz-Castellanos L, Yu H, et al.
Fungal volatile organic compounds: mechanisms involv-
ed in their sensing and dynamic communication with
plants. Front Plant Sci. 2023; 14: 1257098.

[58] Morath SU, Hung R, Bennett JW. Fungal volatile organic
compounds: A review with emphasis on their biotechno-
logical potential. Fungal Biol Rev. 2012; 26: 73-83.

[59] Hintzen KAO, Blanchet L, Smolinska A, Boumans ML,
Stobberingh EE, Dallinga JW, et al. Volatile organic
compounds in headspace characterize isolated bacterial
strains independent of growth medium or antibiotic
sensitivity. PL0oS One. 2024; 19: e0297086.

[60] Bos LD, Sterk Pj Fau-Schultz MJ, Schultz MJ. Volatile
metabolites of pathogens: a systematic review. PL0S
Pathog. 2013; 9: e1003311.

[61] Bous M, Tielsch M, Papan C, Kaiser E, Weber R, Bau-
mbach JI, et al. Detection of volatile organic compounds
in headspace of Klebsiella pneumoniae and Klebsiella
oxytoca colonies. Front Pediatr. 2023; 11: 1151000.

[62] Berna AAO, Merriman JA, Mellett L, Parchment DK,
Caparon MG, Odom John AA-O. Volatile profiling disti-
nguishes Streptococcus pyogenes from other respiratory
streptococcal species. mSphere. 2023; 8: e0019423.

[63] Poeta E, Liboa A, Mistrali S, NUfiez-Carmona E, Sherve-
glieri V. Nanotechnology and E-sensing for food chain
quality and safety. Sensors (Basel). 2023; 23: 8429.

[64] Tian D, Huang G, Ren L, Li Y, Yu J, Lu Q, et al. Effects
of Monascus purpureus on ripe Pu-erh tea in different
fermentation methods and identification of characteristic

volatile compounds. Food Chem. 2024; 440: 138249.

[65] Yu X, Gu C, Guo X, Guo R, Zhu L, Qiu X, et al.
Dynamic changes of microbiota and metabolite of
traditional Hainan dregs vinegar during fermentation
based on metagenomics and metabolomics. Food Chem.
2024; 444: 138641.

[66] Hernandez D, Zambra C, Astudillo CA, Gabriel D, Diaz
J. Evolution of physico-chemical parameters, microorga-
nism diversity and volatile organic compound of apple
pomace exposed to ambient conditions. Heliyon. 2023; 9:
e19770.

[67] Hernandez Flores JL, Martinez YJ, Ramos Lopez MA,
Saldafia Gutierrez C, Reyes AA, Armendariz Rosales
MM, et al. Volatile Organic Compounds Produced
by Kosakonia cowanii Cpl Isolated from the Seeds
of Capsicum pubescensR & P Possess Antifungal
Activity. Microorganisms. 2023; 11: 2491.

[68] Sadeghi M, Shoorgashti R, Lesan S, Hasannia S,
Farrokhnia T. Effects of 810 nm and 940 nm Diode Laser
on ROS Production in Macrophages: The Role of
Interferon-Gamma. J Rep Pharm Sci. 2025; 13: €160276.

[69] Yeganehfard H, Azizi A, Shoorgashti R, Shokouhi
Mostafavi S K, Kharazi-Fard M, et al. Evaluating
Photodynamic Therapy at Two Wavelengths and Cold
Plasma as Alternatives to Chlorhexidine for Targeting
Streptococcus mutans: An In-vitro Study. Arch Clin
Infect Dis. 2025; 20: e160774.

[70] Shoorgashti R, Jafari F, Yazdanfar A, Ehsani SS, Baghiz-
adeh S, et al. Diagnostic and prognostic performance of
artificial intelligence models in detecting odontogenic
keratocysts from histopathologic images: A systematic
review and meta-analysis. Middle East J Rehabil Health
Stud. 2025; 12: €158082.

12



