Document Type : Original Article

Authors

1 Dept. of Restorative Dentistry, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

2 Dept. of Restorative Dentistry, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran.

3 Post Graduate Student, Dept. of Restorative Dentistry, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran.

4 Cellular and Molecular Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Abstract

Statement of the Problem: Laser can influence bonding mechanism by increasing the penetration depth of adhesive in smear layer. The effect of 940 nm diode laser on microtensile bond strength of adhesive to dentin has not been investigated in previous studies. Purpose: The aim of this study was to evaluate the effect of 940 nm diode laser irradiation on microtensile bond strength of Single Bond 2 to dentin.Materials and Method: Thirty sound premolars extracted for orthodontic reasons were randomly divided into five groups as follows: G1 or control: etching+ Single Bond2 (SB); G2: diode laser (940 nm wavelength, 1W power, continuous mode)+ etching+ SB; G3: etching+ laser irradiation+ SB; G4: etching+ SB+ laser irradiation+ adhesive curing; G5: etching+ laser irradiation+ SB +laser irradiation +adhesive curing. After the bonding procedure, Z250 composite resin was applied on the dentin surface in three layers of 2 mm thickness. After 24 hours of immersion in distilled water at 37°C and thermocycling for 1000 thermal cycles, the teeth were sectioned into 1mm2 sticks. The microtensile bond strength was measured using a universal testing machine. Bond strength (MPs) was analyzed by one-way ANOVA followed by HSD post hoc Tukey’s test (α=0.05).Results: G4 (38.35±8.99) showed the significant highest bond strength compared to other groups (p= 0.000). G5 (25.16±6.14)showed significantly higher bondstrength than the control group (18.85±4.79)(p= 0.032).Bond strength of G2 (23.39±6.07)and G3 (22.85±5.11)groups was the same and similar to that in the control group (p> 0.05).Conclusion: Based on the results of this study, it may be concluded that dentin surface irradiation with 940 nm diode laser after adhesive application and prior to curing can significantly increase the bond strength of composite to dentin.

Keywords

1. Alex TG. Advances in adhesive technology. Curr Opin Cosmet Dent. 1995:69–74. [PubMed[Google Scholar]
2. Tay FR, Pashley DH. Dental adhesives of the future. J Adhes Dent. 2002; 4: 91–103. [PubMed[Google Scholar]
3. Firat E, Gurgan S, Gutknecht N. Microtensile bond strength of an etch-and-rinse adhesive to enamel and dentin after Er:YAG laser pretreatment with different pulse durations. Lasers Med Sci. 2012; 27: 15–21. [PubMed[Google Scholar]
4. de Souza AE, Corona SA, Dibb RG, Borsatto MC, Pécora JD. Influence of Er:YAG laser on tensile bond strength of a self-etching system and a flowable resin in different dentin depths. J Dent. 2004; 32: 269–275. [PubMed[Google Scholar]
5. Peumans M, Kanumilli P, De Munck J, Van Landuyt K, Lambrechts P, Van Meerbeek B. Clinical effectiveness of contemporary adhesives: a systematic review of current clinical trials. Dent Mater. 2005; 21: 864–881. [PubMed[Google Scholar]
6. Nakabayashi N. Resin Reinforced Dentine Due to Infiltration of Monomers into the Dentine at the Adhesive Interface. J Jpn Soc Dent Mat Dev. 1982; 1: 78–81. [Google Scholar]
7. Nakabayashi N, Kojima K, Masuhara E. The promotion of adhesion by the infiltration of monomers into tooth substrates. J Biomed Mater Res. 1982; 16: 265–273. [PubMed[Google Scholar]
8. Ramos AC, Esteves-Oliveira M, Arana-Chavez VE, de Paula Eduardo C. Adhesives bonded to erbium:yttrium-aluminum-garnet laser-irradiated dentin: transmission electron microscopy, scanning electron microscopy and tensile bond strength analyses. Lasers Med Sci. 2010; 25: 181–189. [PubMed[Google Scholar]
9. Pioch T, Kobaslija S, Huseinbegović A, Müller K, Dörfer CE. The effect of NaOCl dentin treatment on nanoleakage formation. J Biomed Mater Res. 2001; 56: 578–583. [PubMed[Google Scholar]
10. Tay FR, Moulding KM, Pashley DH. Distribution of nanofillers from a simplified-step adhesive in acid-conditioned dentin. J Adhes Dent. 1999; 1: 103–117. [PubMed[Google Scholar]
11. Sano H, Yoshikawa T, Pereira PN, Kanemura N, Morigami M, Tagami J, et al. Long-term durability of dentin bonds made with a self-etching primer, in vivo. J Dent Res. 1999; 78: 906–911. [PubMed[Google Scholar]
12. Ghonaim A, Abdelmohsen MM, Elkassas DW, Abo-Al-Azz AF. The Effect of Deproteinization of Dentin Surface on the Micro-Shear Bond Strength to Dentin. Med J Cario Univ. 2014; 82:31–35. [Google Scholar]
13. Dayem RN. Assessment of the penetration depth of dental adhesives through deproteinized acid-etched dentin using neodymium: yttrium-aluminum-garnet laser and sodium hypochlorite. Lasers Med Sci. 2010; 25: 17–24. [PubMed[Google Scholar]
14. Dayem RN. A novel method for removing the collagen network from acid-etched dentin by neodymium: yttrium-aluminum-garnet laser. Lasers Med Sci. 2009; 24: 93–99. [PubMed[Google Scholar]
15. Gonçalves SE, de Araujo MA, Damião AJ. Dentin bond strength: influence of laser irradiation, acid etching, and hypermineralization. J Clin Laser Med Surg. 1999; 17: 77–85. [PubMed[Google Scholar]
16. Maenosono RM, Bim Júnior O, Duarte MA, Palma-Dibb RG, Wang L, Ishikiriama SK. Diode laser irradiation increases microtensile bond strength of dentin. Braz Oral Res. 2015; 29: 1–5. [PubMed[Google Scholar]
17. Franke M, Taylor AW, Lago A, Fredel MC. Influence of Nd:YAG laser irradiation on an adhesive restorativeprocedure. Oper Dent. 2006; 31: 604–609. [PubMed[Google Scholar]
18. Klein-Júnior CA, Zander-Grande C, Amaral R, Stanislawczuk R, Garcia EJ, Baumhardt-Neto R, et al. Evaporating solvents with a warm air-stream: effects on adhesive layer properties and resin-dentin bond strengths. J Dent. 2008; 36: 618–625. [PubMed[Google Scholar]
19. Allen JD, Breeding LC, Pashley DH. Effect of warm air on the shear bond strength of composite resins. Quintessence Int. 1992; 23: 289–296. [PubMed[Google Scholar]
20. de Alexandre RS, Sundfeld RH, Giannini M, Lovadino JR. The influence of temperature of three adhesive systems on bonding to ground enamel. Oper Dent. 2008; 33: 272–281. [PubMed[Google Scholar]
21. Malekipour M, Alizadeh F, Shirani F, Amini S. The effect of 808 nm diode laser irradiation on shear bond strength of composite bonded to dentin before and after bonding. J Dent Lasers. 2015; 9: 69–74. [Google Scholar]
22. Matos AB, Oliveira DC, Kuramoto M Jr, Eduardo CP, Matson E. Nd:YAG laser influence on sound dentin bond strength. J Clin Laser Med Surg. 1999; 17: 165–169. [PubMed[Google Scholar]
23. Matos AB, Oliveira DC, Navarro RS, Eduardo CP, Matson E. Nd:YAG laser influence on tensile bond strength of self-etching adhesive systems. J Clin Laser Med Surg. 2000; 18:253–257. [PubMed[Google Scholar]
24. Marimoto AK, Cunha LA, Yui KC, Huhtala MF, Barcellos DC, Prakki A, Gonçalves SE. Influence of Nd:YAG laser on the bond strength of self-etchingand conventional adhesive systems to dental hard tissues. Oper Dent. 2013; 38: 447–455. [PubMed[Google Scholar]
25. Reis A, Wambier L, Malaquias T, Wambier DS, Loguercio AD. Effects of warm air drying on water sorption, solubility, and adhesive strength of simplified etch-and-rinse adhesives. J Adhes Dent. 2013; 15: 41–46. [PubMed[Google Scholar]
26. Parker S. Verifiable CPD paper: laser-tissue interaction. Br Dent J. 2007; 202: 73–81. [PubMed[Google Scholar]
27. Hale GM, Querry MR. Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. Appl Opt. 1973; 12: 555–563. [PubMed[Google Scholar]
28. Cheong WF, Prahl SA, Welch AJ. A review of the optical properties of biological tissues IEEE J. Quantum Electron. 1990; 26: 2166–2185. [Google Scholar]
29. Tsai CL, Chen JC, Wang WJ. Near-infrared absorption property of biological soft tissue constituents. J Med Biol Eng. 2001; 21:7–14. [Google Scholar]
30. Pashley EL, Tao L, Matthews WG, Pashley DH. Bond strengths to superficial, intermediate and deep dentin in vivo with four dentin bonding systems. Dent Mater. 1993; 9: 19–22. [PubMed[Google Scholar]
31. Watanabe I, Nakabayashi N, Pashley DH. Bonding to ground dentin by a phenyl-P self-etching primer. J Dent Res. 1994; 73: 1212–1220. [PubMed[Google Scholar]
32. Gupta S, Kumar S. Lasers in Dentistry - An. Overview. Trends Biomater Artif Organs . 2011; 25: 119–123. [Google Scholar]
33. Sulieman M. An overview of the use of lasers in general dental practice: 2. Laser wavelengths, soft and hard tissue clinical applications. Dent Update. 2005; 32: 286–296. [PubMed[Google Scholar]
34. Tracey SG. Light work. Orthod Products. 2005:88–93. [Google Scholar]
35. Weiner GP. Laser dentistry practice management. Dent Clin North Am. 2004; 48: 1105–1126. [PubMed[Google Scholar]
36. Ariyaratnam MT, Wilson MA, Mackie IC, Blinkhorn AS. A comparison of surface roughness and composite/ enamel bond strength of human enamel following the application of the Nd:YAG laser and etching with phosphoric acid. Dent Mater. 1997; 13: 51–55. [PubMed[Google Scholar]
37. Ariyaratnam MT, Wilson MA, Blinkhorn AS. An analysis of surface roughness, surface morphology and composite/dentin bond strength of human dentin following the application of the Nd:YAG laser. Dent Mater. 1999; 15:223–228. [PubMed[Google Scholar]
38. Oda M, Oliveira DC, Liberti EA. Morphologic evaluation of the bonding between adhesive/composite resin and dentin irradiated with Er:YAG and Nd:YAG lasers: comparative study using scanning microscopy. Pesqui Odontol Bras. 2001; 15: 283–289. [PubMed[Google Scholar]
39. Kinney JH, Haupt DL, Balooch M, White JM, Bell WL, Marshall SJ, et al. The threshold effects of Nd and Ho: YAG laser-induced surface modification on demineralization of dentin surfaces. J Dent Res. 1996; 75: 1388–1395. [PubMed[Google Scholar]