Association of IL-17A Polymorphism with Chronic Periodontitis in Type 1 Diabetes Patients

Sasi KumarPK 1, MDS; Sheeja Varghese S 2, MDS; Thanga Kumaran 3, MDS; Jaga Desaan N 4, MDS; Lombo Daran G 4, MDS;

1 Dept. of Periodontics, JKKN Dental College, Erode, Tamilnadu-638183, India.
2 Saveetha Dental College, Chennai, Tamilnadu, India.
3 Dept. of Periodontics, JKKN Dental College, Tamilnadu, India.
4 Dept. of Prosthodontics, JKKN Dental College and Hospital, Tamilnadu, India.

KEY WORDS
IL-17A; Polymorphisms; Type 1 Diabetes; Chronic Periodontitis; Ethnicity;

ABSTRACT
Statement of the Problem: The association of genetic polymorphisms with periodontitis has been studied extensively. The IL-17 is a group of cytokines which comprises six different molecules (IL-17A, B, C, D, E & F). Among these IL-17A & F are the most commonly understood cytokine which plays a critical role in inflammatory diseases and periodontal inflammation.

Purpose: To evaluate whether Interleukin -17A gene polymorphism is associated with increased risk of chronic periodontitis in type 1 diabetes patients.

Materials and Method: The quantitative case-control study was carried out in 60 subjects and consists of 4 groups which included, Group A: 15 Type 1 diabetes patients (T1DM) with chronic periodontitis (CP), Group B: 15 T1DM patients without CP, Group C: 15 Non-diabetic patients with CP, Group D: 15 Non-diabetic patients without CP. Blood samples were drawn from the subjects and analyzed for IL-17A polymorphism by using the polymerase chain reaction-restriction fragment length polymorphism method.

Results: There was no statistical significant difference seen in the genotype distribution among CP patients with or without T1DM and healthy controls. Odds ratio and p value indicated that increased risks for CP were associated with IL-17A allele (G) in patients with T1DM. This allele was correlated with worse clinical parameters of CP in T1DM patients.

Conclusion: The present study revealed that IL-17A (rs2275913) polymorphism was not associated with increased risk for CP in T1DM patients.

Corresponding Author: Kumar S, Dept. of Periodontics, JKKN Dental College and Hospital, Namakkal Dist, Tamilnadu-638183, India. Tel: 9865289991 Email: sasikumar.pk@jkkn.ac.in

Cite this article as:
This in press article needs final revision

IL-17A Gene Polymorphism and T1DM with Chronic Periodontitis

Kumar S, et al.

IL-17 cytokines play a role in potentially promoting inflammatory and periodontal disease [8].

IL-17 cytokines are also involved in the initiation of autoimmunity in Rheumatoid Arthritis, experimental autoimmune Encephalomyelitis, Multiple Sclerosis, Systemic Lupus Erythematosus, and Auto-Immune Diabetes (T1DM) [9-12]. The risks of T1DM are ALA-associated genotypes and B cell auto-antibodies. Recently, IL-17 secreting T helper 17 (Th 17) cell roles in pathogenicity was also suggested as a risk factor in T1DM development [13]. IL-17 gene is located on each side of the human chromosome 6p12.2. IL-17 shares 50% amino acid with chromosome 6 and also similar functions (almost 50%) as that of chromosome 6. In vitro study revealed that in diabetic patients, there was increased expression of IL-17A and primarily induced by monocytes [14]. IL-17 producing cells were commonly found among the monocytes, peripheral blood of chronic T1DM and activation of IL-17 pathway accelerate the apoptosis of pancreatic β cells and leads to T1DM [15]. The studies done on two different groups of children with new onset of T1DM revealed that there was increase in number of IL-17 producing T-cells in their peripheral blood [16].

IL-17A cytokine in periodontal diseases was significant associated with disease progression and severity of destruction. IL-17A levels were also significantly elevated in saliva and gingival crevicular fluids of chronic periodontitis patients [17-18]. IL-17A polymorphism was studied in the literature and commonly associated with diabetes and chronic & aggressive type of periodontal disease [19-20]. The single nucleotide polymorphisms (SNP) in the IL-17 gene had important effect on the production of IL-17 in T1DM. In addition, Linhartova et al. [19] showed that the correlation between increased levels of IL-17 and a allele of 197A/G SNP16. The role of this a allele was also marginally associated with the increased risk of T1DM and CP. The mechanism of IL-17 in human T1DM provides a new view on the pathogenesis of the disease with periodontitis and implies a novel potential therapeutic strategy in T1DM by controlling the role of IL-17. There were many studies showing a contradictory role of Th17 in both protection and pathogenesis of T1DM and CP [17-20]. Hence, this study was to done to evaluate the association of IL-17A polymorphism in CP with T1DM patients.

Materials and Method

The study was taken out in the outpatient department of Periodontics, JKKN Dental College and Hospital. The ethical form was received after approval from the Institutional Committees for Ethics and informed written consent was taken from all participants before their participation in the study. The study was carried out in 60 subjects and consists of 4 groups which included as, group A consists of 15 T1DM patients with CP, group B consists of 15 T1DM patients without CP, group C consists of 15 Non-diabetic patients with CP, group D consists of 15 Non-diabetic patients without CP. Inclusion criteria for T1DM were both male or female patients, age group between 30-44 years, those who have already diagnosed with T1DM, both controlled and uncontrolled level of glycemic [Glycemic index (HbA1c) was taken for grouping] patients. Inclusion Criteria for CP were cases diagnosed based on AAP criteria stage-II for Generalised Chronic periodontitis which includes presence of clinical attachment loss 3-4mm, pocket probing depth (PPD) of 5mm at least more than 30% teeth involved, 15% to 30% coronal third radiographic bone loss [21]. Exclusion Criteria were smokers, ongoing orthodontic therapy, Aggressive Peridontitis, General Health problems (Hepatitis, HIV infection, Chemotherapy), pregnancy, lactation, and non-Indian races. Periodontal parameters were measured using Williams probe and the gingival Index was also measured for assessing the severity of gingivitis [22]. Diabetic parameters were monitored with HbA1c and fasting Blood Glucose levels (FBS). HbA1c value of <7% revealed that, there was sufficiently good control of blood glucose in T1DM patients and FBS was monitored with cutoff points of >120mg/dl [23].

Methodology- DNA Extraction

The venous blood (5ml) was collected from cubital fos-
sa of the patients under strict sterile conditions and transferred to the laboratory in a falcon tube containing ethylene diamine tetraacetic acid (EDTA) [16]. It was stored at -20°C for DNA separation. The 200 μL of the blood sample was placed into a microcentrifuge tube and 600 μL of RBC cell lysis solution was added to the blood sample. The uniformity in the sample mix was obtained by inverting the tube several times and flicking the bottom of the tube. The incubation of the sample was done for 5 minutes at room temperature and shaken briefly. Again, it was repeated at room temperature for 5 minutes, followed by brief agitation of the tube. The centrifuging was done in 25 seconds with 4000 rpm at 4°C. The supernatant was removed, leaving approximately 25 μL of liquid in the tube. Then, 300 μL of tissue and cell lysis solution was added and by pipetting the cells several times. Then 1μL RNase A solution added and thoroughly mixed and incubated for 30 minutes at 37°C. The samples were cooled by placing on the ice for 3 to 5 minutes. Then, MPC protein precipitation reagent of 150 μL of was added to 300 μL of the list sample. The test tube was again agitated briefly. The centrifugation was done in 4°C for 10 minutes at 10,000 rpm. If the resultant pellet is clear or loose, MPC protein precipitation reagent mix of 25μL is added and then debris should be removed. The debris was discarded and supernatant was transferred to a clean micro centrifuge tube. Then 500μL of isopropanol was added to the recovered supernatant. The tube was inverted for 30-40 times. Then keep it for centrifugation at 4°C for 10 minutes. Then carefully pace of the isopropanol from micro centrifuge tube without dislodging the DNA pellet. The final pellet was rinsed twice with 70 percent ethanol without dislodging. If the pellet was dislodged, centrifuging was done briefly. Removed all the residual ethanol with the pipette and resuspended the DNA in 35μL of TE buffer.

DNA Amplification by Polymerase Chain Reaction
The primer pair (Bioserve, Beltsville, USA) used for this study to check IL-17A polymorphism was, Sense: IL-17AF 5'- AACAAGTAAGAATGAAAAGGACATGGT-3'
Antisense: IL-17AR 5'-CCCCCAATGAGGTCATAGAAGAATC-3'
The amplification was done using conventional PCR system with a cycle consisting of,
i) A denaturation step at 95°C for 15 minutes initially,
ii) Then, denaturation step of 35 cycles for 30 s at 94°C,
iii) Annealing done for 35 cycles for 30 s at 57°C.
iv) Then, the extension step was about 35 cycles at 72°C for 30 s.
v) Final extension step at for 10 minutes 72°C.
The incubation of PCR products was done overnight with Xagl (Waltham, USA) at 37°C. The 6.5% polyacrylamide agarose gel electrophoresis system stained with silver was used for viewing the bands.
The real-time PCR amplification was used for determining the IL-17A (rs2275913) alleles and the typing results was analysed by using a Roche Light Cycler 480 instrument. The detection of IL-17A polymorphism was done using LightSNiP (rs2275913) assay developed by TIB MOLBIOL (GmbH, Berlin, Germany).

IL-17A genotypye distribution and allelic variations in the groups were measured by Chi-Square test. The multiple comparisons (Bonferroni correction) test was used to compare the periodontal parameters between the groups (Mean±SD). The odds ratio (OR) calculation was done using a 95% of confidence intervals (CI).

Results
In total, 60 cases (35 females, 25 males) aged between 30-44 years were included in the present study. The comparisons between groups as well as periodontal status are given in Table 1. We evaluated the frequency of dominant (A) and recessive (G) allele to determine Hardy-Weinberg equilibrium (HW). The frequency of allele (A², G2) was worked out to be 0.61, 0.39 respectively. The distribution of IL-17A polymorphism (A+G= 1) in each group was within HW. The comparison of three genotypes (AA, AG, and GG) was done in T1DM with CP, only CP and healthy patients. The genotype distributions of the IL-17A polymorphisms in each group are shown in Table 2. In this, IL-17A polymorphism showed no statistical significant difference in genotype distribution among the study groups (Control vs Diabetess with CP and Control vs Chronic Periodontitis). No association was found between IL-17A polymorphism in CP, T1DM, and healthy patients (p>0.05). The differences in genotype frequency between patients and control (GroupD Vs GroupA, GroupD Vs GroupB, Gro-
upD Vs GroupC) were not statistically significant. Hence, genotype frequencies were not statistically significant between healthy and diseased patients; GG genotype was shared higher percentage (73.3%, 66.6%, and 46.6%) of distribution among all the diseased groups.

The dominant (AA, AG) and recessive genotype (GG) models in each group were analyzed and compared with the healthy group (group D). T1DM with CP (Group A) had a statistical significant difference when compared (AA+AG vs GG) with a healthy group ($p=0.068$) showed in Table 2. When considering the OR, 95% CI, T1DM+CP group had no association of IL-17A polymorphism, even though p value was significant (OR=1.02 CI (0.654-3.543)) showed in Table 3. When considering the dominant and recessive models, the patients with CP (group C) had a statistical significant difference when compared (A+G versus G) with a healthy group ($p=0.120$) showed in Table 4.

Discussion

Previous studies in the literature reported that IL-17A polymorphism with AA (dominant) genotype and A allele were commonly associated with type 1 & 2 diabetes and CP than GG (recessive) genotype and G allele [24-25]. In order to find the genotype and allele association, we evaluated IL-17A rs2275913 polymorphism in group of patients with and without T1DM and/or CP from South Indian population.

Table 1: Comparing mean level of clinical periodontal parameters (Gingival Index, periodontal probing depth, and clinical attachment loss) in chronic periodontitis with type 1 diabetes patients.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group</th>
<th>Mean±SD</th>
<th>F</th>
<th>Healthy vs TIDM+CP</th>
<th>Healthy vs TIDM</th>
<th>Healthy vs CP</th>
<th>TIDM+CP vs TIDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI</td>
<td>TIDM+CP</td>
<td>1.93±0.02</td>
<td>198.76</td>
<td>$p<0.01^*$</td>
<td>1.02</td>
<td>$p<0.01^*$</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>T1DM</td>
<td>0.81±0.32</td>
<td></td>
<td></td>
<td>$p>0.01$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CP</td>
<td>0.81±0.32</td>
<td></td>
<td></td>
<td>$p>0.01$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Healthy</td>
<td>0.23±0.34</td>
<td></td>
<td></td>
<td>$p>0.01$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPD (mm)</td>
<td>TIDM+CP</td>
<td>4.09±0.98</td>
<td>98.54</td>
<td>$p<0.01^*$</td>
<td>0.48</td>
<td>$p<0.01^*$</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>T1DM</td>
<td>2.97±0.56</td>
<td></td>
<td></td>
<td>$p>0.01$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CP</td>
<td>4.85±0.34</td>
<td></td>
<td></td>
<td>$p>0.01$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Healthy</td>
<td>2.92±0.45</td>
<td></td>
<td></td>
<td>$p>0.01$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAL (mm)</td>
<td>TIDM+CP</td>
<td>2.86±0.74</td>
<td>87.62</td>
<td>$p<0.01^*$</td>
<td>0.62</td>
<td>$p<0.01^*$</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>T1DM</td>
<td>0.69±0.54</td>
<td></td>
<td></td>
<td>$p>0.01$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CP</td>
<td>3.06±0.60</td>
<td></td>
<td></td>
<td>$p>0.01$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Healthy</td>
<td>0.79±0.02</td>
<td></td>
<td></td>
<td>$p>0.01$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* $p<0.05$ then it was considered significant. GI – Gingival index, PPD-Probing pocket depth, CAL-Clinical attachment loss, CP-Chronic Periodontitis, TIDM-Type 1 diabetes, SD-Standard deviation.

Table 2: Distribution of the IL-17A genotypes in the groups (Chi-square test)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>Group D</th>
<th>Healthy vs TIDM+CP(p)</th>
<th>Healthy vs TIDM(p)</th>
<th>Healthy vs CP(p)</th>
<th>TIDM+CP vs TIDM(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.006</td>
<td>0.0144</td>
<td>0.0071</td>
<td>0.034</td>
</tr>
<tr>
<td>AG</td>
<td>4</td>
<td>26.6%</td>
<td>5</td>
<td>33.3%</td>
<td>6.40%</td>
<td>5.33%</td>
<td>6.00%</td>
<td>0.0311</td>
</tr>
<tr>
<td>GG</td>
<td>11</td>
<td>73.3%</td>
<td>10</td>
<td>66.6%</td>
<td>7.46%</td>
<td>6.90%</td>
<td>0.0328</td>
<td>0.007</td>
</tr>
<tr>
<td>AA+AG</td>
<td>4</td>
<td>26.6%</td>
<td>5</td>
<td>33.3%</td>
<td>8.53%</td>
<td>6.399%</td>
<td>0.039</td>
<td>0.006</td>
</tr>
<tr>
<td>AA+AG vs GG</td>
<td>4 vs 11</td>
<td>26.6% vs 33.3%</td>
<td>5 vs 10</td>
<td>66.6% vs 66.6%</td>
<td>8 vs 7</td>
<td>53.3% vs 46.6%</td>
<td>6 vs 9</td>
<td>39.9% vs 60%</td>
</tr>
<tr>
<td>H-W</td>
<td>0.5421</td>
<td>0.3642</td>
<td>0.1476</td>
<td>0.9652</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$p<0.05$ significance for H-W, $p>0.05$ for chi-square test. H-W: Hardy-Weinberg equilibrium, Group A: T1DM+CP, Group B: T1DM without CP, Group C: Chronic Periodontitis (CP), Group D: Healthy Group. T1DM: Type 1 diabetes mellitus.
In this study, AA, AG and GG genotype were assessed and compared among the groups. Our results revealed that no statistical significant difference seen in genotype frequencies (p> 0.05) between the groups. The correlation of GG genotype in T1DM with CP and healthy group (OR=1.043, CI= 0.895-2.065) showed a higher frequency, but not statistically different when compared with T1DM without CP. In T1DM with CP patients, no statistical significant difference was found in allelic distribution of IL-17A when compared with healthy group (p= 0.034), (p= 0.045) respectively. In contrast to our finding, a study done by Linhartova et al. [19] showed that the possible association of IL-17A (rs2275 913) AA genotype and A allele in patients of T1DM with CP. While the genotype frequencies were not statistically significant between healthy and diseased patients, GG genotype was shared higher percentage (73.3%, 66.6% and 46.6%) of distribution among all the diseased groups. Our study also examines the dominant (AA, AG) and recessive genotype (GG) models in each group and compared with the healthy group (group D). T1DM with CP (Group A) had a statistical significant difference when compared (AA+AG vs GG) with healthy group (p= 0.068). When considering the OR, 95% CI, T1DM+CP group had no association of IL-17A polymorphism, even though p value was significant. (OR= 1.021 CI (0.654-3.543).

In CP patients, we found no statistical significant different in genotypes (AA, p= 0.006, AG, p= 0.007, GG, p= 0.0328) and allelic (A, p= 0.041, G, p= 0.037) distribution of IL-17A when compared with a healthy group. While the allele frequencies were not statistically significant between healthy and diseased patients, G allele was shared higher percentage (86.66%, 83.33%, and 66.66%) of the distribution among all diseased groups. This result was in accordance with the study done by Saraiva et al. [20] demonstrated that the GG genotype and G allele was more frequently occurred in diseased (CP, AgP) group. In contrast to our study, vitro study of Espinoza et al. [26] demonstrated that healthy individuals expressing A allele of IL-17A had secreted increased amount of IL-17 cytokines than without this allele. This could be the reason for non-significant result of our study as healthy subjects had less A (23.33%) allele when compared with G (76.66%) allele. Another study in Indian population done by Chaudhari et al. [25] found that IL-17A polymorphism with a allele was significantly associated with localised aggressive periodontitis and CP patients. The three Brazilian and one Iranian studies examined the variability of IL-17A polymorphism in relation to periodontal disease and showed no association with risk of disease [14, 27]. In contrast to this, Correa et al. [27] and Zacarias et al. [24] studies revealed that the A allele and AA genotype as a risk factor for CP. In our study, no statistically significant difference was noticed in IL-17A polymorphism and periodontal status (clinical attachment loss, probing pocket depth). When considering the dominant and recessive models, the patients with CP (group C) had statistically significant difference when compared (A+G versus G) with a healthy group (p= 0.120). In this Odds Ratio & 95% CI, CP group had no association of IL-17A polymorphism.

Table 3: Distribution of genotypes (AA, AG and GG), alleles (A, G) in the groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group D vs A OR (95%CI)</th>
<th>Group D vs B OR (95%CI)</th>
<th>Group D vs C OR (95%CI)</th>
<th>Group A vs B OR (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>0.345(0.887-1.335)</td>
<td>0.765(0.543-2.987)</td>
<td>0.432(0.308-1.047)</td>
<td>0.876(0.765-2.098)</td>
</tr>
<tr>
<td>AG</td>
<td>1.043(0.895-2.065)</td>
<td>0.654(0.611-1.054)</td>
<td>1.065(0.871-1.913)</td>
<td>0.743(0.691-2.650)</td>
</tr>
<tr>
<td>GG</td>
<td>1.021 (0.654-3.543)</td>
<td>0.802 (0.634-1.002)</td>
<td>1.207 (0.765-2.755)</td>
<td>0.987 (0.801-1.093)</td>
</tr>
<tr>
<td>AA/AG vs GG</td>
<td>0.732 (0.314-1.986)</td>
<td>0.765 (0.396-1.743)</td>
<td>0.901 (0.864-1.491)</td>
<td>0.763 (0.654-2.087)</td>
</tr>
<tr>
<td>A</td>
<td>1.1086 (0.651-2.075)</td>
<td>0.619 (0.543-2.980)</td>
<td>1.127 (1.043-3.025)</td>
<td>0.654 (0.598-1.601)</td>
</tr>
</tbody>
</table>

Group A: T1DM+CP, Group B: T1DM without CP, Group C: Chronic Periodontitis (CP), Group D: Healthy Group, T1DM: Type 1 diabetes mellitus.

Table 4: Distribution of the IL-17A alleles (A, G) in the groups (Chi-Square Test)

<table>
<thead>
<tr>
<th>IL-17A</th>
<th>Group A %</th>
<th>Group B %</th>
<th>Group C %</th>
<th>Group D %</th>
<th>D vs A (p value)</th>
<th>D vs B (p value)</th>
<th>D vs C (p value)</th>
<th>A vs B (p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A%</td>
<td>21.66</td>
<td>13.33</td>
<td>33.33</td>
<td>23.33</td>
<td>0.034</td>
<td>0.019</td>
<td>0.041</td>
<td>0.026</td>
</tr>
<tr>
<td>G%</td>
<td>78.32</td>
<td>86.66</td>
<td>66.66</td>
<td>76.66</td>
<td>0.045</td>
<td>0.025</td>
<td>0.037</td>
<td>0.021</td>
</tr>
</tbody>
</table>

p < 0.05. The chi-square test was used Group A: T1DM+CP, Group B: T1DM without CP, Group C: Chronic Periodontitis (CP), Group D: Healthy Group, T1DM: Type 1 diabetes mellitus.
morphism, even though p value was a significance (OR= 1.207 CI (0.765-2.755). Interestingly, the genotype distributions of the IL-17A variant (AA+AG vs GG) in the group A (T1DM &CP) (p= 0.068) and group C (non-diabetic with CP (p= 0.120) were significant when compared with group B (diabetes without CP, p= 0.0174) patients as showed in Table 2, 3.

This could be explained the possible association of IL-17A polymorphism with CP either in the presence or absence of diabetes. This different finding in South Indian population could be attributed to the genetic variation seen like in European, Iranian and Brazilian populations.

The main limitations of this study are First, The study was done with small sample size of patients included in each group. Secondly, uncontrolled diabetes patients were not included for in this study. This could lead to the genotypic and allelic variation bias in the IL-17A polymorphism. Third, the patients were selected from the same zone of location; this could mislead the genetic variation. Fourth, the diabetes and non-diabetes groups were not age-matched. However, within the limitation, the study showed no association of IL-17A polymorphism in T1DM with CP patients that indicates the possible importance in disease pathology of chronic periodontitis.

Conclusion
The present study demonstrated that no association of IL-17A polymorphism in CP with T1DM patients of the south Indian population. Further studies with large sample size might give an evidence based overview of IL-17A polymorphisms and CP. In addition, there was a genotype similarity among the patients and controls, we hypothesized that IL-17A is not a polymorphic within our Indian population.

Key Message
The present study demonstrated that no association of IL-17A polymorphism in type1diabetes with chronic periodontitis of the south Indian population. But in the clinical point of view, worsen periodontal parameters were noticed in IL-17A polymorphism and chronic periodontitis.

Conflicts of Interest
None

References
This in press article needs final revision

Kumar S, et al.

02-1311.

