Profile of Serum Heat Shock Protein-27 Level in Patients with Salivary Gland Tumor

Negar Moghadasi¹, DMD; Azadeh Andisheh-Tadbir², DMD, MSd; Shima Torabi Ardekani³, DMD, MSd; Bijan Khademi⁴, DMD, MSd; Mahyar Malekzadeh⁵, PhD; Razieh Zare³, DMD, MSd;

¹ Undergraduate Student, School of Dentistry, International Branch, Shiraz University of Medical Sciences, Shiraz, Iran.
² Oral and Dental Disease Research Center, Dept. of Oral and Maxillofacial Pathology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
³ Dept. of Oral and Maxillofacial Pathology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
⁴ Dept. of Otorhinolaryngology, Khalili Hospital, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran.
⁵ Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran.

KEY WORDS
Adenoid cystic carcinoma; Salivary gland tumor; Mucoepidermoid carcinoma; HSP27; Pleomorphic adenoma;

ABSTRACT

Statement of the Problem: Heat shock protein 27 (HSP27) plays important roles in many cellular processes and has been implicated in different types of diseases such as cancers.

Purpose: This study aimed to evaluate the serum level of HSP27 in patients with salivary gland tumors and to determine if it had a correlation with prognosis or not.

Materials and Method: This study was done on 60 patients with salivary gland tumor including 16 pleomorphic adenoma, 33 adenoid cystic carcinoma, 6 mucoepidermoid carcinoma, and 5 acinic cell carcinoma and 28 healthy control subjects. The control cases were healthy blood donors who matched the study group in age and sex. Serum samples were obtained from the clotted blood and HSP 27 concentrations were measured with Sandwich ELISA. Statistical analysis was performed by using One-way ANOVA, Post Hoc test, Independent sample t-test, and ROC analysis. A p-value of less than 0.05 was considered as significant.

Results: The mean serum level of HSP27 was 3956.1±3830.1 (pg/ml) in patients with malignant salivary gland tumor, which was significantly higher than that in benign salivary gland tumor (752.2±485.6) and healthy, controls (602.3±575.8) (p< 0.001). However, there was no significant difference in the HSP27 serum levels between the patients with benign salivary gland tumors and healthy controls (p= 0.2). No association was detected between the mean serum levels of HSP27 and clinicopathologic factors such as age, sex, stage, nodal metastasis (p> 0.05), except for the tumor size (p= 0.04).

Conclusion: The HSP27 concentration increased in patients with malignant salivary gland tumors. Moreover, the HSP27 level was correlated with tumor growth, invasiveness, and diagnosability. Yet, larger clinical studies are required to explore its prognostic value.

Corresponding Author: Zare R, Dept. of Oral and Maxillofacial Pathology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran. Tel: +098-71-36263193-4 Fax: +98-71-36270325 Email: zare.r.sums.1394@gmail.com

Introduction
Salivary gland tumors comprise 1-4% of human neoplasms [1]. Pleomorphic adenoma (PA), with an incidence of 70%, is the most common tumor of salivary gland
Heat Shock Protein-27 Level in Salivary Gland Tumor
Moghadi N, et al

origin [2]. Mucoepidermoid carcinoma (MEC) and adenoid cystic carcinoma (ACC) [3] are the most common salivary gland cancers that can metastasize to the regional lymphatics or distant organs. It has been shown that salivary gland tumors have numerous complexities in the site of occurrence, structural origins, histopathologic features, clinical appearance, and prognosis [4-5]. Therefore, their mechanism of development and prognosis is significantly different [6]. Moreover, the salivary gland tumors have recurrence potential after treatment; thus, finding methods of early diagnosis and prevention of these tumors is very important in clinical cancers [6].

Heat shock proteins (HSPs) are a kind of important molecular chaperones expressed in the nuclei, cytoplasm, and cell membrane of both eukaryotic and prokaryotic organisms, which function to induce cell growth regulation and proliferation [7-8]. HSPs family is subdivided into four major families according to their activity: HSPα, HSPβ, HSPγ, and small molecular weight HSPs such as HSP27, with 27 KDa weight [9]. HSP27 plays important roles in many cellular processes such as cell differentiation [8], inhibition of apoptosis [10], thermotolerance, cytoskeleton dynamics, and signal transduction [11]. HSP27 has also been implicated in different types of diseases including cancers [12], renal injury and fibrosis [13], as well as cardiovascular and neurodegenerative diseases [14].

Over-expression of HSP27 has been found in different tumor types and is involved in tumor formation and development, prognosis, treatment and biological behaviors [15-16]. Therefore, it can be a therapeutic target and potential biomarker for diagnosis and prognosis [12].

In a recent study by VahenKepenekian et al. [17], it was demonstrated that HSPs overexpression in the cytosol of malignant transformed cells resulted in their translocation into the extracellular serum. The overexpression of HSP27 in the serum might also be the result of its release following the stress-induced death of the necrotic cells [17].

Guilan et al. [6] showed the overexpression of HSP27 in the cytoplasm of the tumoral epithelium in the salivary gland tissue and found a negative correlation between HSP27 tissue level and the tumor size, invasion, and metastasis. Accordingly, this study was conducted to evaluate the serum level of HSP27 in patients with salivary gland tumors and to determine if it has a correlation with prognosis or not. It seems that HSP27 can be a novel target for increasing the effect of cancer treatment; therefore, this study was designed to assess and compare the serum level of HSP27 in the most common benign and malignant salivary gland tumors and to consider whether its serum level was correlated with any tumor characteristics such as tumor grade and stage.

Materials and Method
A total of 60 patients with salivary gland tumor (16 pleomorphic adenoma, 33 adenoid cystic carcinoma, 6 mucoepidermoid carcinoma and 5 acinic cell carcinoma) and 28 healthy control subjects were enrolled in this study. All the study patients were referred by the ENT Department of the School of Medicine of Shiraz University of Medical Sciences and had been histopathologically diagnosed of salivary gland tumor. The control cases were healthy blood donors who matched the study group based on age and sex. This study was approved by the Ethics committee of Shiraz University of Medical Sciences and all the participants were informed about the nature of the study and agreed to participate by signing an informed consent form.

Serum samples were obtained from clotted blood following centrifugation at 4°C and stored at 80°C until the time of analysis. HSP 27 concentrations were measured with Sandwich ELISA following the manufacturer’s instructions (BMS; GmbH, Germany).

Statistical analysis was performed by using One-way ANOVA, Post Hoc test, Independent sample t-test and ROC analysis. A p-value of less than 0.05 was considered as significant.

Results
Table 1 shows the clinical characteristics of 44 patients with malignant salivary glands. The mean age of patients with malignant salivary gland tumor was 51.4±17.2 years old (ranging 21-80). The mean age of patients with benign tumors was 45.6±14.6 years old (ranging 22-71) and healthy controls were 49.7±17.2 years old (ranging 19-85).

The mean serum level of HSP27 was 3956.1±3830.1 (pg/ml) in patients with malignant salivary gland tumor, which was significantly higher than that in those with benign salivary gland tumor (752.2±485.6) and healthy
controls (602.3±575.8) (p< 0.001). There was no significant difference in the serum levels of HSP27 between the patients with benign salivary gland tumors and healthy controls (p= 0.2) (Table 2).

The ROC curve analysis showed that the optimal cut-off value for HSP27 was 809.01( pg/ml), indicating that HSP27 serves as a diagnostic marker for malignant salivary gland tumors. This yielded a sensitivity of 75% and specificity of 75%. There was no correlation between the mean serum levels of HSP27 and clinicopathologic factors such as age, sex, stage, and nodal metastasis (p> 0.05), except for the tumor size (p= 0.04). The serum level of HSP27 was significantly higher in patients with larger tumor size than the small tumor size.

**Discussion**

Biomarkers are used to detect and monitor the growth of the tumor and evaluate the effect of anti-cancer therapies [18]. A major disadvantage of tissue-based biomarkers is their limited accessibility and the risk of developing infection due to invasive surgery. Therefore, blood-derived biomarkers are better than biopsies in detecting and monitoring the tumor in that these samples can be taken before, during and after treatment with minimal invasion [19].

HSPs are a series of highly conserved proteins that play a crucial role in maintaining protein homeostasis [20]. HSPs are produced under stressful conditions and participate in folding and assembling of proteins [12]. However, HSPs can be secreted in the blood circulation and have been shown to interact with some immune cells [21]. It has been demonstrated that HSP27 expression is crucial for tumor development and is involved in tumor behavior and prognosis [22-23]. Increased HSP27 expression has been reported in different cancers [24-25] and is associated with poor prognosis in the liver, prostate, and gastric carcinoma [26-27].

In the present study, circulation of HSP27 level was significantly higher in patients with malignant salivary gland tumors than in those with benign tumors and healthy control subjects. This was in line with those of the previous studies that evaluated the HSP27 level in breast cancer, non-small cell lung cancer, pancreatic, and gastric adenocarcinoma [28-31].

This study demonstrated that HSP27 level can be used as a discriminating biomarker for differentiating patients with and without cancer. This was consistent with the results of Lia et al. [27] and De et al. [32-33]. Lia et al. stated that Heat shock protein 27 levels were significantly higher in cancer and pancreatitis compared with control (p< 0.001 for both) and De et al. reported that the use of HSP 27 ELISA could be extremely useful in evaluating the role of soluble HSP 27 in breast or other cancers.

Cell damage or necrotic cell death can cause the release of intracellular HSP into circulation that could lead to elevated HSP serum concentration [34]. In this study, HSP elevation in patients with malignant salivary gland tumor might be related to its increased production and release because of cell damage. In salivary gland carcinoma, HSP27 level did not correlate with prognostic factors, except for the tumor size. In a recent study on non-small cell lung cancer, it was found that the serum level of HSP27 was significantly higher in patients at the advanced stage than the early stages [35]. However, no significant relationship was found between the serum level of HSP27 and histological types and sex [35].

Van Eden et al. [36] showed that HSP released by the cells were biologically active molecule, confirming the hypothesis that elevated circulating HSP27 level in the serum can lead to tumor growth and invasiveness. Different mechanisms have been proposed to explore the role of HSP27 in tumor progression.

---

**Table 1:** The base line data of all groups

<table>
<thead>
<tr>
<th>Patients</th>
<th>Number</th>
<th>Age (Mean [range])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign tumors</td>
<td>16</td>
<td>45.6±14.6 (22-71)</td>
</tr>
<tr>
<td>Malignant tumors</td>
<td>44</td>
<td>51.4±17.2 (21-80)</td>
</tr>
<tr>
<td>Control</td>
<td>28</td>
<td>49.7±17.2 (19-85)</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>48.3±16.2 (20-78)</td>
</tr>
</tbody>
</table>

**Table 2:** Clinicopathologic features and the mean HSP27 level of the patients with malignant salivary gland tumor

<table>
<thead>
<tr>
<th>Clinicopathologic data</th>
<th>Number (%)</th>
<th>Mean HSP27 level±SD (pg/ml)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor Size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1+T2</td>
<td>32(26.7)</td>
<td>3011.6±3426.5</td>
<td>0.04</td>
</tr>
<tr>
<td>T3+T4</td>
<td>12(26.7)</td>
<td>6477.1±6268.5</td>
<td></td>
</tr>
<tr>
<td>Lymph node involvement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>28(63.6)</td>
<td>3701.1±4111.7</td>
<td>0.5</td>
</tr>
<tr>
<td>N1</td>
<td>16(36.4)</td>
<td>4402.4±3359.9</td>
<td></td>
</tr>
<tr>
<td>Distant Metastasis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0</td>
<td>41(93.1)</td>
<td>3742.6±3549.9</td>
<td>0.08</td>
</tr>
<tr>
<td>M1</td>
<td>3(6.9)</td>
<td>6874.1±7046.9</td>
<td></td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I+ II</td>
<td>20(45.5)</td>
<td>3117.7±3495.05</td>
<td>0.3</td>
</tr>
<tr>
<td>III+ IV</td>
<td>24(54.5)</td>
<td>4654.8±4026.8</td>
<td></td>
</tr>
</tbody>
</table>

---

This in press article needs final revision
Furthermore, it has been shown that HSP$_{27}$ has the ability to block apoptotic cell death and may contribute to tumor growth via inhibition of apoptosis [37]. It can also directly interact with other pro-survival proteins and regulate the cell survival [38].

In a recent study by Banerjee et al. [30], it was reported that increased HSP$_{27}$ levels in human breast tumor could induce unresponsiveness in T cells. Moreover, HSP induced significant neovascularization via macrophage differentiation, and was critically important for tumor growth [30]. They suggested that immune suppression induced by HSP$_{27}$ was a new tumor growth supporting mechanism that might lead to novel treatment strategies by targeting the released HSP$_{27}$ [30].

Furthermore, our results showed the positive association of HSP27 serum levels with tumor size; this finding suggests that the serum level of HSP27 is related to disease condition in SGTs, suggested that based on mechanism HSP27 through angiogenesis lead to the growth of the tumor.

Hsu et al. [11] demonstrated that HSP$_{27}$ overexpression was associated with resistance to chemotherapy. Resistance to chemotherapy and radiotherapy has been reported in malignant salivary gland tumor [39]. Resistance to chemotherapy, in salivary gland cancer may partly contribute to elevated HSP$_{27}$.

This study could not evaluate the expression of HSP$_{27}$ and the relationship between HSP$_{27}$ expression and its serum level. Therefore, further studies are required to explore their relationship.

**Conclusion**

This study showed that HSP$_{27}$ concentration increased in patients with malignant salivary gland tumors and its level correlated with tumor growth and invasiveness, besides its diagnostic ability. However, larger clinical studies are required to explore its prognostic value.

**Acknowledgments**

The authors thank the Vice-Chancellorcy of Shiraz University of Medical Sciences for supporting this research (Grant #92-01-03-6495). This manuscript was based on the thesis by Negar Moghadasi for partial fulfillment of DDS degree. The authors thank Dr. M. Vossoughi of the Dental Research Development Center of the Dental School, for the statistical analysis.

**Conflict of Interests**

None declared.

**References**


[10] Korneeva I, Bongiovanni AM, Girotra M, Caputo TA,


