Document Type : Original Article

Authors

1 Dept. of Prosthodontics, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran.

2 Dentist, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran.

3 Dept. of Pharmacognosy, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.

4 Dept. of Social Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.

5 Dept. of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.

Abstract

Statement of the Problem: Due to growing concerns on complications of chemical drugs, the use of herbal extracts has been considered as denture cleaning solutions.
Purpose: The aim of this study was to evaluate the in-vitro effects of Nigella sativa on the cleansing of the formation of Candida albicans plaque on the acrylic resin pieces.
Materials and Method:In this experimental study, 30 pieces of acrylic resin were contaminated by Candida albicans suspension. Then, the acrylic pieces were randomly divided into six groups and treated with 0.2, 0.4, 20, and 200 mg/ml of Nigella sativa, 100,000 units of nystatin (positive control), and distilled water (negative control) for 8 hours. At the end of the exposure period of the drugs, the rinse solution from acrylic pieces was cultured in Sabouraud Dextrose Agar and the average of the colonies from each group was compared.  
Results: The average number of colonies obtained at concentrations of 0.2, 0.4, 20, and 200 mg/ml of Nigella sativa were 122.6, 117.8, 73.4, and 14.4 colonies, respectively, as compared to distilled water (141.6) and nystatin (0) that had a significant difference (p < 0.001).
Conclusion: Nigella sativa extract at definite concentration is capable of clearing dental prosthesis, but compared to nystatin, it is weaker. However, due to the indirect immune-regulatory effects of Nigella sativa, it is suggested that other studies be conducted to investigate the therapeutic properties of Nigella sativa from the aspects of antimicrobial, anti-inflammatory, and oral ulcer healing in candida oral lesions.

Keywords

1. Pereira-Cenci T, Del Bel Cury AA, Crielaard W, Ten Cate JM. Development of Candida-associated denture stomatitis: new insights. J Appl Oral Sci. 2008; 16: 86–94. [PMC free article] [PubMed[Google Scholar]
2. Soliman S, Alnajdy D, El-Keblawy AA, Mosa KA, Khoder G, Noreddin AM. Plants' Natural Products as Alternative Promising Anti-Candida Drugs. Pharmacogn Rev. 2017; 11: 104–122. [PMC free article] [PubMed[Google Scholar]
3. Jafari AA, Falah-Tafti A, Lotfi-Kamran MH, Zahraeii A, Kazemi A. Vinegar as a Removing Agent of Candida albicans From Acrylic Resin Plates. Jundishapur J Microbiol. 2012; 5: 388–392. [Google Scholar]
4. Von Fraunhofer JA, Loewy ZG. Factors involved in microbial colonization of oral prostheses. Gen Dent. 2009; 57: 136–143. [PubMed[Google Scholar]
5. Figueiral MH, Azul A, Pinto E, Fonseca PA, Branco FM, Scully C. Denture-related stomatitis: identification of aetiological and predisposing factors - a large cohort. J Oral Rehabil. 2007; 34: 448–455. [PubMed[Google Scholar]
6. Salerno C, Pascale M, Contaldo M, Esposito V, Busciolano M, Milillo L, et al. Candida-associated denture stomatitis. Med Oral Patol Oral Cir Bucal. 2011; 16: e139–e143. [PubMed[Google Scholar]
7. Gendreau L, Loewy ZG. Epidemiology and etiology of denture stomatitis. J Prosthodont. 2011;20:251–260. [PubMed[Google Scholar]
8. Cochis A, Fracchia L, Martinotti MG, Rimondini L. Biosurfactants prevent in vitro Candida albicans biofilm formation on resins and silicon materials for prosthetic devices. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012; 113: 755–761. [PubMed[Google Scholar]
9. Farah CS, Lynch N, McCullough MJ. Oral fungal infections: an update for the general practitioner. Aust Dent J. 2010; 55 Suppl 1: 48–54. [PubMed[Google Scholar]
10. Redding S, Bhatt B, Rawls HR, Siegel G, Scott K, Lopez-Ribot J. Inhibition of Candida albicans biofilm formation on denture material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009; 107: 669–672. [PubMed[Google Scholar]
11. Nett JE, Marchillo K, Spiegel CA, Andes DR. Development and validation of an in vivo Candida albicans biofilm denture model. Infect Immun. 2010; 78: 3650–3659. [PMC free article] [PubMed[Google Scholar]
12. Thompson GR 3rd, Patel PK, Kirkpatrick WR, Westbrook SD, Berg D, Erlandsen J, et al. Oro-pharyngeal candidiasis in the era of antiretroviral therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 109: 488–495. [PMC free article] [PubMed[Google Scholar]
13. Singh A, Verma R, Murari A, Agrawal A. Oral candidiasis: An overview. J Oral Maxillofac Pathol. 2014; 18(Suppl 1): S81–S85. [PMC free article] [PubMed[Google Scholar]
14. Khodavaisy S, Mohammadi F, Fesharaki SH, Samieeifard SH, Solimani P, Badali H. Candida biofilms and their less susceptibility to antifungal drugs. Clin Excellence. 2014; 3: 58–71. [Google Scholar]
15. Kuhn DM, George T, Chandra J, Mukherjee PK, Ghannoum MA. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipidformulations and echinocandins. Antimicrob Agents Chemother. 2002; 46: 1773–1780. [PMC free article] [PubMed[Google Scholar]
16. Campos MS, Marchini L, Bernardes LA, Paulino LC, Nobrega FG. Biofilm microbial communities of denture stomatitis. Oral Microbiol Immunol. 2008; 23: 419–424. [PubMed[Google Scholar]
17. Dwivedi P, Thompson A, Xie Z, Kashleva H, Ganguly S, Mitchell AP, et al. Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilmsand neutrophil evasion. PLoS One. 2011; 6: e16218. [PMC free article] [PubMed[Google Scholar]
18. Katragkou A, Kruhlak MJ, Simitsopoulou M, Chatzimoschou A, Taparkou A, Cotten CJ, et al. Interactions between human phagocytes and Candida albicans biofilms alone and in combination with antifungal agents. J Infect Dis. 2010; 201: 1941–1949. [PMC free article] [PubMed[Google Scholar]
19. Consani RL, Azevedo DD, Mesquita MF, Mendes WB. Saquy PC Effect of repeated disinfections by microwave energy on the physical and mechanical properties of denture base acrylic resins. Braz Dent J. 2009; 20: 132–137. [PubMed[Google Scholar]
20. Paranhos Hde F, Davi LR, Peracini A, Soares RB, Lovato CH, Souza RF. Comparison of physical and mechanical properties of microwave-polymerized acrylicresin after disinfection in sodium hypochlorite solutions. Braz Dent J. 2009; 20: 331–335. [PubMed[Google Scholar]
21. Pinto Lde R, Acosta EJ, Távora FF, da Silva PM, Porto VC. Effect of repeated cycles of chemical disinfection on the roughness and hardness of hard reline acrylic resins. Gerodontology. 2010; 27: 147–153. [PubMed[Google Scholar]
22. Jnanadev KR, Satish Babu CL, Shilpa Shetty S, Surendra Kumar GP, Sheetal HS. Disinfecting the acrylic resin plate using electrolyzed acid water and 2% glutaraldehyde: a comparative microbiological study. J Indian Prosthodont Soc. 2011; 11: 36–44. [PMC free article] [PubMed[Google Scholar]
23. Meşe A, Meşe S. Effect of microwave energy on fungal growth of resilient denture liner material. Biotechnol Biotec Eq. 2007; 21: 91–93. [Google Scholar]
24. Mendonça MJ, Machado AL, Giampaolo ET, Pavarina AC, Vergani CE. Weight loss and surface roughness of hard chairside reline resins after toothbrushing: influence of postpolymerization treatments. Int J Prosthodont. 2006; 19: 281–287. [PubMed[Google Scholar]
25. Arita M, Nagayoshi M, Fukuizumi T, Okinaga T, Masumi S, Morikawa M, et al. Microbicidal efficacy of ozonated water against Candida albicans adhering to acrylicdenture plates. Oral Microbiol Immunol. 2005; 20: 206–210. [PubMed[Google Scholar]
26. Khan MA, Dhaded S, Joshi S. Commercial and Plant Extract Denture Cleansers in Prevention of Candida albicans Growth on Soft Denture Reliner: In Vitro Study. J Clin Diagn Res. 2016; 10: ZC42–ZC45. [PMC free article] [PubMed[Google Scholar]
27. Al-Thobity AM, Al-Khalifa KS, Gad MM, Al-Hariri M, Ali AA, Alnassar T. In Vitro Evaluation of the Inhibitory Activity of Thymoquinone in Combatting Candida albicans in Denture Stomatitis Prevention. Int J Environ Res Public Health. 2017; 14: E743. [PMC free article] [PubMed[Google Scholar]
28. Naeini A, Shayegh SS, Shokri H, Davati A, Khazaei A, Akbari A. In vitro antifungal effect of herbal mixture (Nigella sativa, Foeniculum vulgare and Camellia sinensis) against Candida species isolated from denture wearers. J Herbmed Pharmacol. 2017; 6: 74–79. [Google Scholar]
29. Liu X, Han Y, Peng K, Liu Y, Li J, Liu H. Effect of traditional Chinese medicinal herbs on Candida spp. from patients with HIV/AIDS. Adv Dent Res. 2011; 23: 56–60. [PubMed[Google Scholar]
30. Doudi M, Setorki M, Hoveyda L. Comparing the antifungal effects of five essential oils plants eucalyptus, cinnamon, wormwood, sagebrush and iranian rose damascena on three standard strains of candida albicans in vitro. Int J Biol Pharm Allied Sci. 2014; 3: 490–500. [Google Scholar]
31. Entok E, Ustuner MC, Ozbayer C, Tekin N, Akyuz F, Yangi B, et al. Anti-inflammatuar and anti-oxidative effects of Nigella sativa L.: 18FDG-PET imaging of inflammation. Mol Biol Rep . 2014; 41: 2827–2834. [PubMed[Google Scholar]
32. Haloci E, Manfredini S, Toska V, Vertuani S, Ziosi P, Topi I, et al. Antibacterial and antifungal activity assessment of Nigella Sativa essential oils. World Acad Sci Eng Technol. 2012; 6: 270–272. [Google Scholar]
33. Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res. 2003; 17: 299–305. [PubMed[Google Scholar]
34. Bakathir HA, Abbas NA. Detection of the antibacterial effect of Nigella sativa ground seeds with water. Afr J Tradit Complement Altern Med. 2011; 8: 159–164. [PMC free article] [PubMed[Google Scholar]
35. Aikemu A, Xiaerfuding X, Shiwenhui C, Abudureyimu M, Maimaitiyiming D. Immunomodulatory and anti-tumor effects of Nigella glandulifera freyn and sint seedson ehrlich ascites carcinoma in mouse model. Pharmacogn Mag. 2013; 9: 187–191. [PMC free article] [PubMed[Google Scholar]
36. Omar OM, Khattab NM, Khater DS. Nigella sativa oil as a pulp medicament for pulpotomized teeth: a histopathological evaluation. J Clin Pediatr Dent. 2012; 36: 335–341. [PubMed[Google Scholar]
37. Al-Bayaty FH, Kamaruddin AA, Ismail MA, Abdulla MA. Formulation and evaluation of a new biodegradable periodontal chip containing Thymoquinone in a chitosan base for the management of chronic periodontitis. J Nanomater. 2013; 397308: 397308. [Google Scholar]
38. Al-Douri AS, Al-Kazaz S. The effect of Nigella sativa oil (black seed) on the healing of chemically induced oral ulcer in rabbit (experimental study) Al-Rafidain Dent J. 2010; 10: 151–157. [Google Scholar]
39. Fareid MA. In vitro: Evaluation of inhibitory activity of some plant extracts against oral candidiasis. N Y Sci J. 2014; 7: 66–76. [Google Scholar]
40. Sitara U, Niaz I, Naseem J, Sultana N. Antifungal effect of essential oils on in vitro growth of pathogenic fungi. Pak J Bot. 2008;40:409–414. [Google Scholar]
41. Raval BP, Shah TG, Suthar MP, Ganure AL. Screening of Nigella Sativa Seeds for antifungal activity. Ann Biolog Res. 2010; 1: 164–171. [Google Scholar]
42. Taha M, Azeiz A, Saudi W. Antifungal effect of thymol, thymoquinone and thymohydroquinone against yeasts, dermatophytes and non-dermatophyte molds isolated from skin and nails fungal infections. Egypt J Biochem Mol Biol. 2010; 28: 109–126. [Google Scholar]
43. Khan MA, Ashfaq MK, Zuberi HS, Mahmood MS, Gilani AH. The in vivo antifungal activity of the aqueous extract from Nigella sativa seeds. Phytother Res. 2003; 17: 183–186. [PubMed[Google Scholar]
44. Elmowalid G, Amar AM, Ahmad AA. Nigella sativa seed extract: 1. Enhancement of sheep macrophage immune functions in vitro. Res Vet Sci. 2013; 95: 437–443. [PubMed[Google Scholar]
45. Dodds MW, Johnson DA, Yeh CK. Health benefits of saliva: a review. J Dent. 2005; 33: 223–233. [PubMed[Google Scholar]
46. Al-Fattani MA, Douglas LJ. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol. 2006; 55: 999–1008. [PubMed[Google Scholar]
47. Bonifácio BV, dos Santos Ramos MA, da Silva PB, Negri KMS, de Oliveira Lopes É, de Souza LP, et al. Nanostructured lipid system as a strategy to improve the anti-Candida albicans activity of Astronium sp. Int J Nanomed. 2015; 10: 5081. [PMC free article] [PubMed[Google Scholar]