Document Type : Original Article
Authors
1 Dept. of Periodontics, Faculty of Dentistry, Sabzevar University of Medical Sciences, Sabzevar, Iran.
2 Dept. of Mechanical Engineering Hakim Sabzevari University, Sabzevar, Iran.
3 Student, Dept. of Civil Engineering, Hakim Sabzevari University, Sabzevar, Iran.
Abstract
Statement of the Problem: The first molar root location plays a pivotal role in neutralization of forces applied to the teeth to prevent injury.
Purpose: This study aimed to assess the effect of maxillary and mandibular first molar root location on biomechanical behavior of the periodontium under vertical and oblique loadings.
Materials and Method: In this three-dimensional (3D) finite element analysis (FEA), the maxillary and mandibular first molars and their periodontium were modeled. The Young’s modulus and the Poisson’s ratio for the enamel, dentin, dental pulp, periodontal ligament (PDL), and cortical and cancellous bones were adopted from previous studies. The changes in maximum von Misses stress (MVMS) values of each component were analyzed.
Results: The MVMS values were the highest in the enamel followed by dentin, cortical bone, cancellous bone, and PDL. The maxillary and mandibular first molars with different root locations and their periodontium showed different biomechanical behaviors under the applied loads.
Conclusion: An interesting finding was that the stress concentration point in the path of load degeneration changed from the cervical third in dentin to the apical third in the cancellous bone, which can greatly help in detection of susceptible areas over time.
Keywords
Zahra Baghani Google Scholar
- Fiorellini JP, Kim D, Chang YC. Anatomy, Structure, and Function of the Periodontium. In: Newman MG, Takei HH, Klokkevold PR, Carranza FA. Carranza’s clinical periodontology.13th ed. Elsevier Sanders: Philadelphia; 2019. p. 36.
- Lindhe J, Nyman S, Ericsson I. Trauma from Occlusion: Periodontal Tissues. In: LindheJ, Lang NP, Karring T. Clinical periodontology and Implant Dentistry. 5th ed. Blackwell Publishing: Oxford; 2015. p. 349.
- de*Albuquerque Lopes ACT, Quartaroli TÉO MA, Corrêa MG, Ishikiriama BLC, Campos MLG. Evaluation of bone loss due to primary occlusal trauma in two experim-ental models of occlusal overload. Rev Odontol UNESP. 2016; 45: 183-188.
- Fan J, Caton JG. Occlusal trauma and excessive occlusal forces: Narrative review, case definitions, and diagnostic considerations. J Periodontol. 2018; 89 Suppl 1: S214-S222.
- Ericsson I, Lindhe J. Effect of longstanding jiggling on experimental marginal periodontitis in the beagle dog. J Clin Periodontol. 1982; 9: 497-503.
- Rucci N. metabolism, Molecular biology of bone remodelling. Clin Cases Miner Bone Metab. 2008; 5: 49-56.
- Hu C, Qin QH. Bone remodeling and biological effects of mechanical stimulus. AIMS Bioeng. 2020; 7: 12-28.
- Beaupré GS, Orr TE, Carter DR. An approach for time‐ dependent bone modeling and remodeling- theoretical development. J Orthop Res. 1990; 8: 651-661.
- Las Casas EBD, Cornacchia TPM, Gouvêa PH, Cimini Jr CA. Abfraction and anisotropy--effects of prism orientation on stress distribution. Comput Methods Biomech Biomed Engin. 2003; 6: 65-73.
- Mendiburu-Zavala CE, Peñaloza-Cuevas R, Erosa RC. Occlusal Trauma May Be a Factor to Cause Periapical Lesions: Report of Two Cases. J Dent Oral Health Cosmesis. 2016; 1: 7.
- Palamara, D, Palamara JE, Tyas MJ, Messer HH. Strain patterns in cervical enamel of teeth subjected to occlusal loading. Dent Mater. 2000; 16: 412-419.
- Rees JS. The effect of variation in occlusal loading on the development of abfraction lesions: a finite element study. J Oral Rehabil. 2002; 29: 188-193.
- Silva BRd, Ferreira NC, Moreira-Neto JJS, da*Silva Jr FI, Teixeira EH, de*Aguiar ASW. Stress distribution on maxillary central incisor under similar traumatic situations with different loading forces: a 3-D finite element analysis. Arquivosem Odontologia. 2013; 49: 52-59.
- Spranger H. Investigation into the genesis of angular lesions at the cervical region of teeth. Quintessence Int. 1995; 26: 149-154.
- Goel VK, Khera SC, Singh K. Clinical implications of the response of enamel and dentin to masticatory loads. J Prosthet Dent. 1990; 64: 446-454.
- Robinson, D, Aguilar L, Gatti A, Abduo J, Lee PVS, Ackland D. Load response of the natural tooth and dental implant: A comparative biomechanics study. J Adv Prosthodont. 2019; 11: 169-178.
- Chang KH, Magdum S, Khera SC, Goel VK. An advanc-ed approach for computer modeling and prototyping of the human tooth. Ann Biomed Eng. 2003; 31: 621-631.
- Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent. 2001; 85: 585-598.
- Hsu M, Chang CH. Application of finite element analysis in dentistry. Int J Oral Maxillofac Implants. 2010; 5: 43-46.
- Mascarenhas R, Parveen S, Shenoy BS, Kumar GS, Ramaiah VV. Infinite applications of finite element method. J Indian Orthod Soc. 2018; 52(4_suppl2): 142-150.
- Reddy MS, Sundram R, Eid*Abdemagyd HA. Application of finite element model in implant dentistry: A systematic review. J Pharm Bioallied Sci. 2019; 11(Suppl 2): S85–S91.
- Zampelis A, Tsamasphyros G. Finite element analysis and its application in dental implant research, in dental computing and applications: Advanced techniques for clinical dentistry. Available at: https://www.igi-global. com/chapter/finite-element-analysis-its-application/8092
- Wakabayashi N, Ona M, Suzuki T, Igarashi Y. Nonlinear finite element analyses: advances and challenges in dental applications. J Dent. 2008; 36: 463-471.
- Danza M, Zollino I, Paracchini L, Riccardo G, Fanali S, Carinci F. 3D finite element analysis to detect stress distribution: spiral family implants. J Maxillofac Oral Surg. 2009; 8: 334-339.
- Shahnaseri S, Farahani M, Ghasemianpour Bavandi M, Bagherieh SH, Mousavi SA. Stress distribution of maxillary first molar PDL with high pull head gear traction: A finite element analysis. Futur Dent J. 2005; 22: 652-662.
- Guler MS, Guler C, Cakici F, Cakici EB, Sen S. Finite element analysis of thermal stress distribution in different restorative materials used in class V cavities. Niger J Clin Pract. 2016; 19: 30-34.
- Huang HM , Ou KL, Wang WN, Chiu WT, Lin CT, Lee SY. Dynamic finite element analysis of the human maxillary incisor under impact loading in various directions. J Endod. 2005; 31: 723-727.
- Kim S, Kim S, Choi H, Woo D, Park YB, Shim JS, et al. A three-dimensional finite element analysis of short dental implants in the posterior maxilla. Int J Oral Maxillofac Implants. 2014; 29: e155-e164.
- Toms SR, Eberhardt AW. A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am J Orthod Dentofacial Orthop. 2003; 123: 657-665.
- Borcić J, Antonić R, Urek MM, Petricević N, Nola-Fuchs P, Catić A, et al. 3-D stress analysis in first maxillary premolar. Coll Antropol. 2007; 31: 1025-1029.
- Borcić J, Antonić R, Muhvić Urek M, Petricević N, Nola-Fuchs P, Catić A, et al. 3-D stress analysis in first maxillary premolar. Collegium antropologicum, Coll Antropol. 2007; 31: 1025-1029.
- Oyama K, Motoyoshi M, Hirabayashi M, Hosoi K, Shimizu N. Effects of root morphology on stress distribution at the root apex. Eur J Orthod. 2007; 29: 113-117.
- Benazzi S, Grosse IR, Gruppioni G, Weber GW, Kullmer O. Comparison of occlusal loading conditions in a lower second premolar using three-dimensional finite element analysis. Clin Oral Investig. 2014; 18: 369-375.
- Benazzi S, Nguyen HN, Kullmer O, Hublin JJ. Unravelling the functional biomechanics of dental features and tooth wear. PLoS One. 2013; 8: e69990.
- Hernández-Vázquez RA, Urriolagoitia-Sosa G, Marqu-et-Rivera RA, Romero-Ángeles B, Mastache-Miranda OA, Urriolagoitia-Calderón GG. Numerical analysis of a dental zirconium restoration and the stresses that occ-ur in dental tissues. Appl Bionics Biomech. 2019; 2019: 1049306.
- Varga S, Spalj S, Varga ML, Milosevic SA, Mestrovic S, Slaj M. Maximum voluntary molar bite force in subjects with normal occlusion. Eur J Orthod. 2011; 33: 427-433.
- D’souza KM, Aras MA. Three-dimensional finite element analysis of the stress distribution pattern in a mandibular first molar tooth restored with five different restorative materials. J Indian Prosthodont Soc. 2017; 17: 53-60.
- Jiang Q, Huang Y, Tu X, Li Z, He Y, Yang X. Biomech-anical properties of first maxillary molars with different endodontic cavities: a finite element analysis. J Endod. 2018; 44: 1283-1288.
- Çelik*Köycü B, Imirzalioğlu P, Özden UA. Three-dimensional finite element analysis of stress distribution in inlay-restored mandibular first molar under simultaneous thermomechanical loads. Dent Mater J. 2016; 35: 180-186.
- Choy K, Pae E K, Park Y, Kim K H, Burstone CJ. Effect of root and bone morphology on the stress distribution in the periodontal ligament. Am J Orthod Dentofacial Orthop. 2000; 117: 98-105.
- Kamble RH, Lohkare S, Hararey PV, Mundada RD. Stress distribution pattern in a root of maxillary central incisor having various root morphologies: A finite element study. Angle Orthod. 2012; 82: 799-805.
- Nelson SJ, Ash MM. Weelers dental anatomy, physiology, and occlusion. 11830 Westline Industrial Drive. 9th ed. Saunders Elsevier: St. Louis, Mo; 2010. p. 171-184.
- Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent. 1999; 27: 89-99.
- Kantardzić I, Vasiljević D, Blazić L, Luzanin O. Influence of cavity design preparation on stress values in maxillary premolar: a finite element analysis. Croatian Med J. 2012; 53: 568-576.
- Eskitaşcioğlu G, Belli S, Kalkan M. Evaluation of two post core systems using two different methods (fracture strength test and a finite elemental stress analysis). J Endod. 2002; 28: 629-633.
- Yoon HG, Oh HK, Lee DY, Shin JH. 3-D finite element analysis of the effects of post location and loading location on stress distribution in root canals of the mandibular 1st molar. J Appl Oral Sci. 2018; 26: e20160406.
- Yuan K, Niu C, Xie Q, Jiang W, Gao L, Huang Z, et al. Comparative evaluation of the impact of minimally invasive preparation vs. conventional straight‐line preparation on tooth biomechanics: a finite element analysis. Eur J Oral Sci. 2016; 124: 591-596.
- Fernandes CP, Glantz POJ, Svensson SA, Bergmark B. A novel sensor for bite force determinations. Dentval Materials. 2003; 19: 118-126.
- Zhang Z, Zheng K, Li E, Li W, Li Q, Swain MV. Mechanical benefits of conservative restoration for dental fissure caries. J Mech Behav Biomed Mater. 2016; 53: 11-20.
- Liu Z, Qian Y, Liu D. Stress analysis of first permanent mandibular molar with class 1 restorations of different cement bases by occlusive load: A finite element analysis. Int J Numer Method Biomed Eng. 2010; 26: 1371-1379.
- Soliheen MAM, Kurniawan D, Nor FM. Stress distribution between bonding surface of dental filling in enamel and dentine. Procedia Manufacturing. 2015; 2: 212-217.
- Johansson AS, Svensson KG, Trulsson M. Impaired masticatory behavior in subjects with reduced periodontal tissue support. J Periodontol. 1996; 77: 1491-1497.
- Carranza FA. Periodontal response to external forces. In: carranza’s clinical periodontology. 5th ed. Elsevier Saunders: St. Louis, Missouri; 2011. p. 152.
- Jäger A, Radlanski R J. Alveolar bone remodelling following orthodontic tooth movement in aged rats. An animal experimental study. Dtsch Stomatol. 1991; 41: 399-406.
- Jeon HH, Teixeira H, Tsai A. Mechanistic insight into orthodontic tooth movement based on animal studies: A critical review. J Clin Med. 2021; 10: 1733.
- Karring T, Nyman S, Thilander B, Magnusson I. Bone regeneration in orthodontically produced alveolar bone dehiscences. J. Periodontal Res. 1982; 17: 309-315.
- Milne TJ, Ichim I, Patel B, McNaughton A, Meikle MC. Induction of osteopenia during experimental tooth movement in the rat: alveolar bone remodelling and the mechanostat theory. Eur J Orthod. 2009; 31: 221-231.
- Xu R, Guo D, Zhou X, Sun J, Zhou Y, Fan Y, et al. Disturbed bone remodelling activity varies in different stages of experimental, gradually progressive apical periodontitis in rats. Int J Oral Sci. 2019; 11: 1-11.
- Zhu J, Luo D, Rong Q, Wang X. Corresponding author effect of biomimetic material on stress distribution in mandibular molars restored with inlays: a three-dimensional finite element analysis. Peer J. 2019; 7: e7694.
- Grippo JO. Abfractions: a new classification of hard tissue lesions of teeth. J Esthet Restor Dent. 1991; 3: 14-19.
- Yang S, Kim SM, Choi N, Yang H. Stress distribution of molars restored with minimal invasive and conventional technique: a 3-D finite element analysis. J Dent Rehabil Appl Sci. 2018; 34: 297-305.
- Chauhan SP, Sharma DS, Jain Ml. Initial Stresses induced in Permanent Maxillary First Molar in Mixed Dentition under Normal Masticatory Forces: A Finite Element Study. J Clin Pediatr Dent. 2016; 40: 334-340.
- Xu H, Jiang Z, Xiao X, Fu J, Su Q. Influence of cavity design on the biomechanics of direct composite resin restorations in Class IV preparations. EJOS. 2012; 120: 161-167.
- Xu HP, Fu J, Deng J, Zheng QH, Zhou W, Huang DM. Effect of occlusal slope related to uneven attrition on root stress distribution and potential fracture. J Dent Sci. 2018; 13: 367-373.
- Lertchirakarn V, Palamara JEA, Messer HH. Finite element analysis and strain-gauge studies of vertical root fracture. J Endod. 2003; 29: 529-534.
- Chan CP, Lin CP, Tseng SC, Jeng JH. Vertical root fracture in endodontically versus nonendodontically treated teeth a survey of 315 cases in Chinese patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999; 87: 504-507.
- Zou X, Liu D, Yue L, Wu M. The ability of cone-beam computerized tomography to detect vertical root fractures in endodontically treated and nonendodontically treated teeth: a report of 3 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011; 111: 797-801.
- Tang L, Zhou X, Wang Y, Zhang L, Zheng Q, Huang D. Detection of vertical root fracture using cone beam computed tomography: report of two cases. Dent Traumatol. 2011; 27: 484-488.
- Wang P, Su L. Clinical observation in 2 representative cases of vertical root fracture in nonendodontically treated teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009; 107: e39-e42.
- Poiate IA, de*Vasconcellos AB, de*Santana RB, Poiate E. Three‐dimensional stress distribution in the human periodontal ligament in masticatory, parafunctional, and trauma loads: finite element analysis. J Periodontol. 2009; 80: 1859-1867.
- Cailleteau JG, Rieger MR, Akin JE. Comparison of intracanal stresses in a post-restored tooth utilizing the finite element method. J Endod. 1992; 18: 540-544.
- Carranza FA. The Tooth-Suporting Structures in Carranza's clinical periodontology. Available at: https://www.worldcat.org/title/carranzas-clinical-periodontology/oclc/48093112
- Liu S, Liu Y, Xu J, Rong Q, Pan S. Influence of occlusal contact and cusp inclination on the biomechanical character of a maxillary premolar: a finite element analysis. J Prosthet Dent. 2014; 112: 1238-1245.